精英家教网 > 高中数学 > 题目详情
15.在△ABC中,$AB=3,AC=2,\overrightarrow{BD}=\frac{1}{2}\overrightarrow{BC},则\overrightarrow{AD}•\overrightarrow{DB}$的值为(  )
A.$\frac{5}{2}$B.$-\frac{5}{2}$C.$\frac{5}{4}$D.$-\frac{5}{4}$

分析 根据题意画出图形,结合平面向量的线性表示与数量积运算,即可求出运算结果.

解答 解:如图所示,
△ABC中,AB=3,AC=2,$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{BC}$,
∴D为BC的中点,
∴$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$);
又$\overrightarrow{DB}$=$\frac{1}{2}$$\overrightarrow{CB}$=$\frac{1}{2}$($\overrightarrow{AB}$-$\overrightarrow{AC}$),
∴$\overrightarrow{AD}$•$\overrightarrow{DB}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)•$\frac{1}{2}$($\overrightarrow{AB}$-$\overrightarrow{AC}$)=$\frac{1}{4}$(${\overrightarrow{AB}}^{2}$-${\overrightarrow{AC}}^{2}$)=$\frac{1}{4}$×(32-22)=$\frac{5}{4}$.
故选:C.

点评 本题考查了平面向量的线性运算与数量积运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.某中学数学老师分别用两种不同教学方式对入学数学平均分和优秀率都相同的甲、乙两个高一新班(人数均为20人)进行教学(两班的学生学习数学勤奋程度和自觉性一致),数学期终考试成绩茎叶图如下:

(1)学校规定:成绩不低于75分的优秀,请填写下面的2×2联表,并判断有多大把握认为“成绩优秀与教学方式有关”.
甲班乙班合计
优秀14          8        22    
不优秀61218
合计202040
附:参考公式及数据
P(x2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
(2)从两个班数学成绩不低于90分的同学中随机抽取3名,设ξ为抽取成绩不低于95分同学人数,求ξ的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.“m=1”是“函数f(x)=log2(1+mx)-log2(1-mx)为奇函数”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=sin2x的图象向左平移φ(φ>0)个单位后关于直线$x=\frac{π}{3}$对称,则φ的最小值为(  )
A.$\frac{π}{12}$B.$\frac{5π}{12}$C.$\frac{π}{6}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若定义域为R的函数y=f(x),其图象是连续不断的,且存在常数λ(λ∈R),使得f(x+λ)+λf(x)=0对任意实数x都成立,则称f(x)是一个“λ-伴随函数”.给出下列四个关于“λ-伴随函数”的命题:①f(x)=0是常数函数中唯一一个“λ-伴随函数”;②f(x)=x+1是“λ-伴随函数”;③f(x)=2x是“λ-伴随函数”;④当λ>0时,“λ-伴随函数”f(x)在(0,λ)内至少有一个零点.所有真命题的序号为③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.某三棱锥的三视图是三个边长相等的正方形及对角线,若该三棱锥的体积是$\frac{1}{3}$,则它的表面积是2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若复数z满足|z|•$\overline{z}$=20-15i,则z的虚部为(  )
A.3B.-3C.3iD.-3i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.$\int_1^e{(x+\frac{1}{x}})dx$=(  )
A.e2B.$\frac{{{e^2}+1}}{2}$C.$\frac{{{e^2}-1}}{2}$D.$\frac{{{e^2}+3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知P={x|-4≤x≤2,x∈Z},Q={x|-3<x<1},则P∩Q=(  )
A.(-1,3)B.[-2,1)C.{0,1,2}D.{-2,-1,0}

查看答案和解析>>

同步练习册答案