精英家教网 > 高中数学 > 题目详情
20.我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”.已知F1,F2是一对相关曲线的焦点,P是椭圆和双曲线在第一象限的交点,当∠F1PF2=60°时,这一对相关曲线中椭圆的离心率为(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{1}{2}$

分析 设F1P=m,F2P=n,F1F2=2c,由余弦定理4c2=m2+n2-mn,设a1是椭圆的长半轴,a1是双曲线的实半轴,由椭圆及双曲线定义,得m+n=2a1,m-n=2a1,由此能求出结果.

解答 解:设F1P=m,F2P=n,F1F2=2c,
由余弦定理得(2c)2=m2+n2-2mncos60°,即4c2=m2+n2-mn,
设a1是椭圆的实半轴,a2是双曲线的实半轴,
由椭圆及双曲线定义,得m+n=2a1,m-n=2a2
∴m=a1+a2,n=a1-a2
将它们及离心率互为倒数关系代入前式得3a22-4c2+a12=0,
a1=3a2,e1•e2=$\frac{c}{{a}_{1}}•\frac{c}{{a}_{2}}$=$\frac{c}{{a}_{1}}•\frac{3c}{{a}_{1}}$=1
即3e12=1
∴e1=$\frac{\sqrt{3}}{3}$
故选:A.

点评 本题考查椭圆与双曲线的定义,考查了椭圆与双曲线的几何性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设Sn为等差数列{an}的前n项和,若Sn=$\frac{n}{m}$,Sm=$\frac{m}{n}$(m≠n),则Sm+n-4的符号是(  )
A.B.C.非负D.非正

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=2xlog2e-2lnx-ax+3的一个极值点在区间(1,2)内,则实数a的取值范围是(0,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知实数x∈[1,10]执行如图所示的流程图,则输出的x不小于63的概率为(  )
A.$\frac{1}{3}$B.$\frac{4}{9}$C.$\frac{2}{5}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若?x∈[$\frac{1}{4}$,+∞),使得不等式ex<$\frac{x-m}{\sqrt{x}}$成立,则实数m的取值范围是(  )
A.(-∞,-$\frac{1}{2}$${e}^{\frac{1}{4}}$)B.($\frac{1}{4}$-$\frac{1}{2}$${e}^{\frac{1}{4}}$,+∞)C.(-∞,$\frac{1}{4}$-$\frac{1}{2}$${e}^{\frac{1}{4}}$)D.($\frac{1}{2}$-$\frac{1}{2}$${e}^{\frac{1}{4}}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.定义在R上的函数f(x)满足f(x)=$\frac{f′(1)}{2}$e2x-2+x2-2f(0)x,g(x)=f($\frac{x}{2}$)-$\frac{1}{4}$x2+(1-a)x+a.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数g(x)的单调区间;
(Ⅲ) 如果s、t、r满足|s-r|≤|t-r|,那么称s比t更靠近r.当a≥2且x≥1时,试比较$\frac{e}{x}$和ex-1+a哪个更靠近lnx,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在最近发生的飞机失联事件中,各国竭尽全力搜寻相关信息,为体现国际共产主义援助精神,中国海监某支队奉命搜寻某海域.若该海监支队共有A、B型两种海监船10艘,其中A型船只7艘,B型船只3艘.
(1)现从中任选2艘海监船搜寻某该海域,求恰好有1艘B型海监船的概率;
(2)假设每艘A型海监船的搜寻能力指数为5,每艘B型海监船的搜寻能力指数为10.现从这10艘海监船中随机的抽出4艘执行搜寻任务,设搜寻能力指数共为ξ,求ξ的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在三棱柱ABC-A1B1C1中,面ABB1A1为矩形,AB=1,AA1=$\sqrt{2}$,D为AA1的中点,BD与AB1交于点O,CO⊥面ABB1A1
(Ⅰ)证明:BC⊥AB1
(Ⅱ)若OC=OA,求直线CO与面ABC成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设点P(x,y)是曲线a|x|+b|y|=1(a≥0,b≥0)上任意一点,其坐标(x,y)均满足$\sqrt{{x}^{2}+{y}^{2}+2x+1}$+$\sqrt{{x}^{2}+{y}^{2}-2x+1}$≤2$\sqrt{2}$,则$\sqrt{2}$a+b取值范围为[2,+∞).

查看答案和解析>>

同步练习册答案