精英家教网 > 高中数学 > 题目详情
2.(1)已知a,b是正常数,a≠b,x,y∈(0,+∞),求证:$\frac{a^2}{x}+\frac{b^2}{y}≥\frac{{{{(a+b)}^2}}}{x+y}$,指出等号成立的条件;
(2)利用(1)的结论求函数$f(x)=\frac{1}{2x}+\frac{2}{1-x},(x∈(0,1))$的最小值,指出取最小值时x的值.

分析 (1)利用基本不等式a2+b2≥2ab,乘积一定,和有最小值,等号成立的条件是两正数相等;
(2)利用(1)的结论,将(2)变形为f(x)=$\frac{(\frac{\sqrt{2}}{2})^{2}}{x}+\frac{(\sqrt{2})^{2}}{1-x}$即可.

解答 解:(1)应用二元均值不等式,得($\frac{{a}^{2}}{x}+\frac{{b}^{2}}{y}$)(x+y)=a2+b2+${a}^{2}•\frac{y}{x}$+${b}^{2}•\frac{x}{y}$
≥a2+b2+2$\sqrt{{a}^{2}•\frac{y}{x}•{b}^{2}•\frac{x}{y}}$=(a+b)2
故$\frac{a^2}{x}+\frac{b^2}{y}≥\frac{{{{(a+b)}^2}}}{x+y}$.
当且仅当${a}^{2}•\frac{y}{x}$+${b}^{2}•\frac{x}{y}$,即$\frac{a}{x}=\frac{b}{y}$时上式取等号.
(2)由(1)f(x)=$\frac{(\frac{\sqrt{2}}{2})^{2}}{x}+\frac{(\sqrt{2})^{2}}{1-x}$≥$\frac{(\frac{3\sqrt{2}}{2})^{2}}{x+1-x}$=$\frac{9}{2}$
当且仅当$\frac{\frac{\sqrt{2}}{2}}{x}$=$\frac{\sqrt{2}}{1-x}$,即x=$\frac{1}{3}$时上式取最小值,即[f(x)]min=$\frac{9}{2}$.

点评 本题考查不等式的应用,另外给你一种解题工具,让你应用它来解答某一问题,这是近年考试命题的一种新颖的题型之一,很值得读者深刻反思和领悟当中的思维本质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.对于命题:若O是线段AB上一点,则有|$\overrightarrow{OB}$|•$\overrightarrow{OA}$+|$\overrightarrow{OA}$|•$\overrightarrow{OB}$=$\overrightarrow 0$.将它类比到平面的情形是:若O是△ABC内一点,则有S△OBC•$\overrightarrow{OA}$+S△OCA•$\overrightarrow{OB}$+S△OBA•$\overrightarrow{OC}$=$\overrightarrow 0$,将它类比到空间情形可以是:若O为四面体ABCD内一点,则有VO-BCD•$\overrightarrow{OA}$+VO-ACD•$\overrightarrow{OB}$+VO-ABD•$\overrightarrow{OC}$+VO-ABC•$\overrightarrow{OD}$=$\overrightarrow 0$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知x、y满足$\left\{\begin{array}{l}{y≥0}\\{x-y≥0}\\{2x-y-2≥0}\end{array}\right.$,则z=$\frac{y+1}{x+1}$的取值范围是[$\frac{1}{2}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=xlnx在(0,5)上的值域是[-$\frac{1}{e}$,5ln5).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知a>b>0,求证:$\sqrt{a-b}$>$\sqrt{a}$-$\sqrt{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.二项展开式(2x-1)10中x的奇次幂项的系数之和为(  )
A.$\frac{1+{3}^{10}}{2}$B.$\frac{1-{3}^{10}}{2}$C.$\frac{{3}^{10}-1}{2}$D.-$\frac{1+{3}^{10}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知△ABC中,AD为角A的平分线,AC=2,AB=3,AD=$\frac{6\sqrt{3}}{5}$,则BC=$\sqrt{43}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在锐角△ABC中,角A,B,C所对的边分别为a,b,c.若b=1,A=2B,则a的范围为$(\sqrt{2},\sqrt{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设x为实数,命题p:?x∈R,x2+x+1≥0的否定是(  )
A.¬p:?x0∈R,x02+x0+1<0B.¬p:?x0∈R,x02+x0+1≤0
C.¬p:?x0∈R,x02+x0+1<0D.¬p:?x0∈R,x02+x0+1≤0

查看答案和解析>>

同步练习册答案