精英家教网 > 高中数学 > 题目详情
命题“?x0∈R,使得x03<0”的否定为(  )
A、?x0∈R,使得x03≥0
B、?x∈R,x3<0
C、?x∈R,使得x3≤0
D、?x∈R,x3≥0
考点:命题的否定
专题:简易逻辑
分析:直接利用特称命题的否定是全称命题写出结果即可.
解答: 解:因为特称命题的否定是全称命题,
所以命题“?x0∈R,使得x03<0”的否定为:?x∈R,x3≥0.
故选:D.
点评:本题考查命题的否定,因此每天与全称命题的否定关系,基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若关于x不等式ax2+bx+c<0的解集为(-∞,-2)∪(-
1
2
,+∞)
,则关于x不等式cx2-bx+a>0的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

化简 
(1)lg25+lg2×lg50+(lg2)2
(2)当8<x<10时,化简
(x-8)2
+
(x-10)2

查看答案和解析>>

科目:高中数学 来源: 题型:

若a=40.9,b=80.48,c=(
1
2
-1.5.a,b,c的大小是(  )
A、a>b>c
B、a<b<c
C、a<c<b
D、b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|1≤x≤4},B={x|x≤a}.若A⊆B,实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示:下列程序框图的输出结果构成了数列{an}的前10项.
(1)求数列的第3项a3、第4项a4以及数列的递推公式;
(2)证明:数列{an+1}为等比数列;并求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=-
1
2
+
3
2
i(i为虚数单位),则z2=(  )
A、1
B、-
1
2
-
3
2
i
C、-
1
8
-
3
3
8
i
D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

长方体ABCD-A1B1C1D1中,AB=3,BC=3,AA1=4,则二面角D1-AB-D的余弦值是(  )
A、
3
5
B、
4
5
C、
2
2
D、
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
y2
a2
+
x2
b2
=1(a>b>0),A(0,2)在椭圆上,过椭圆的中心O的直线交椭圆于B、C两点,且
AC
BC
=0,|
OC
-
OB
|=2|
BC
-
BA
|,求此椭圆的方程.

查看答案和解析>>

同步练习册答案