分析 (1)求出导函数,根据f'(1)=-2,求出a的值;
(2)代入a,根据导函数得出函数的单调区间即可.
解答 解:(1)f'(x)=$\frac{1}{4}$-$\frac{a}{{x}^{2}}$-$\frac{1}{x}$,
∵f'(1)=-2,
∴a=$\frac{5}{4}$;
(2)f'(x)=$\frac{(x-5)(x+1)}{4{x}^{2}}$,
当x∈(0,5)时,f'(x)<0,f(x)递减;
当x∈(5,+∞)时,f'(x)>0,f(x)递增;
∴函数的递增区间为(5,+∞),递减区间为(0,5).
点评 本题考查了导函数的概念和利用导函数判断函数的单调区间,属于基础题型,应熟练掌握.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$$\overrightarrow{a}$$-\frac{1}{6}$$\overrightarrow{b}$ | B. | $\frac{2}{3}$$\overrightarrow{a}$$-\frac{1}{2}$$\overrightarrow{b}$ | C. | $\frac{1}{6}$$\overrightarrow{a}$$-\frac{1}{3}$$\overrightarrow{b}$ | D. | $\frac{1}{6}$$\overrightarrow{a}$$-\frac{1}{6}$$\overrightarrow{b}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com