精英家教网 > 高中数学 > 题目详情
如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BB1D1D所成角的正弦值为(   )
A.B.C.D.
D
交与O点,再连BO,则为所成角,下面就是计算了。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图所示,平面PAD⊥平面ABCDABCD为正方形,PAAD,且PA=AD=2,EFG分别是线段PAPDCD的中点。
(1)求证:BC//平面EFG
(2)求三棱锥EAFG的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在直三棱柱中,平面侧面。
(Ⅰ)求证:
(Ⅱ)若直线AC与平面A1BC所成的角为θ,二面角A1-BC-A的大小为φ,试判断θφ的大小关系,并予以证明。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在五棱锥中,底面
(1)证明:平面
(2)求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在几何体中,面为矩形,
(1)求证;当时,平面PBD⊥平面PAC;
(2)当时,求二面角的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)如图,四面体中,的中点,.(Ⅰ)求证:平面;(Ⅱ)求异面直线所成角的大小;

(Ⅲ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题









(1)求点到平面的距离;
(2)求与平面所成角的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

矩形ABCD(AB≤BC)中,AC=2,沿对角线AC把它折成直二面角B-AC-D后,BD=,求AB、BC的长.
 
翰林汇

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,ABCD-A1B1C1D1为正方体,则以下结论:
①BD∥平面CB1D1; 
②AC1⊥BD; 
③AC1⊥平面CB1D
其中正确结论的个数是           (   )
A.0B.1 C.2D.3

查看答案和解析>>

同步练习册答案