精英家教网 > 高中数学 > 题目详情
6.如图,已知椭圆$\frac{x^2}{4}$+$\frac{y^2}{3}$=1上任意一点P(异于顶点)处的切线与该椭圆在长轴顶点A,B处的切线分别交于点M,N,该椭圆的左,右焦点分别是F1,F2,直线MF1,NF2的斜率分别是k1,k2
(Ⅰ)求k1•k2的值;
(Ⅱ)求证:F1,F2,M,N四点共圆.

分析 (Ⅰ)设P(x1,y1),则直线MN的方程为:$\frac{{x}_{1}x}{4}+\frac{{y}_{1}y}{3}$=1,且4y12=12-3x12,求出M(2,$\frac{3}{{y}_{1}}-\frac{3{x}_{1}}{2{y}_{1}}$),N(-2,$\frac{3}{{y}_{1}}+\frac{3{x}_{1}}{2{y}_{1}}$),由此能求出k1•k2的值.
(Ⅱ)连结MF1,NF2,交于点C,利用向量法求出∠MF1N=∠MF2N,又∠F1CF2=∠MCN,从而△F1CN∽△F2CM,进而△F1ON∽△F2OM,∠F2F1M=∠F2NM,由此得到∠F2F1N+∠NMF2=180°.从而能证明F1,F2,M,N四点共圆.

解答 解:(Ⅰ)设P(x1,y1),则直线MN的方程为:$\frac{{x}_{1}x}{4}+\frac{{y}_{1}y}{3}$=1,
且4y12=12-3x12
由题意知直线BN:x=-2,直线AM:x=2,A(2,0),B-2,0),F1(-1,0),F2(1,0),
联立$\left\{\begin{array}{l}{\frac{{x}_{1}x}{4}+\frac{{y}_{1}y}{3}=1}\\{x=2}\end{array}\right.$,得M(2,$\frac{3}{{y}_{1}}-\frac{3{x}_{1}}{2{y}_{1}}$),
联立$\left\{\begin{array}{l}{\frac{{x}_{1}x}{4}+\frac{{y}_{1}y}{3}=1}\\{x=-2}\end{array}\right.$,得N(-2,$\frac{3}{{y}_{1}}+\frac{3{x}_{1}}{2{y}_{1}}$),
∵直线MF1,NF2的斜率分别是k1,k2
∴k1=$\frac{\frac{3}{{y}_{1}}-\frac{3{x}_{1}}{2{y}_{1}}}{3}$=$\frac{1}{{y}_{1}}-\frac{{x}_{1}}{2{y}_{1}}$,k2=$\frac{\frac{3}{{y}_{1}}+\frac{3{x}_{1}}{{2y}_{1}}}{-3}$=-$\frac{1}{{y}_{1}}-\frac{{x}_{1}}{2{y}_{1}}$,
k1•k2=($\frac{1}{{y}_{1}}-\frac{{x}_{1}}{2{y}_{1}}$)(-$\frac{1}{{y}_{1}}-\frac{{x}_{1}}{2{y}_{1}}$)=$\frac{{{x}_{1}}^{2}}{4{{y}_{1}}^{2}}-\frac{1}{{{y}_{1}}^{2}}$=$\frac{{{x}_{1}}^{2}-4}{4{{y}_{1}}^{2}}$=$\frac{{{x}_{1}}^{2}-4}{12-3{{x}_{1}}^{2}}$=-$\frac{1}{3}$.
证明:(Ⅱ)连结MF1,NF2,交于点C,
∵F1(-1,0),F2(1,0),M(2,$\frac{3}{{y}_{1}}-\frac{3{x}_{1}}{2{y}_{1}}$),N(-2,$\frac{3}{{y}_{1}}+\frac{3{x}_{1}}{2{y}_{1}}$),
∴$\overrightarrow{{F}_{1}M}$=(3,$\frac{3}{{y}_{1}}-\frac{3{x}_{1}}{2{y}_{1}}$),$\overrightarrow{{F}_{1}N}$=(-1,$\frac{3}{{y}_{1}}+\frac{3{x}_{1}}{2{y}_{1}}$),$\overrightarrow{{F}_{2}M}$=(1,$\frac{3}{{y}_{1}}-\frac{3{x}_{1}}{2{y}_{1}}$),$\overrightarrow{{F}_{2}N}$=(-3,$\frac{3}{{y}_{1}}+\frac{3{x}_{1}}{2{y}_{1}}$),
∴cos<$\overrightarrow{{F}_{1}N},\overrightarrow{{F}_{1}M}$>=$\frac{\overrightarrow{{F}_{1}N}•\overrightarrow{{F}_{1}M}}{|\overrightarrow{{F}_{1}N}|•|\overrightarrow{{F}_{1}M}|}$=$\frac{-3+\frac{9}{{{y}_{1}}^{2}}-\frac{9{{x}_{1}}^{2}}{4{{y}_{1}}^{2}}}{\sqrt{9+(\frac{3}{{y}_{1}}-\frac{3{x}_{1}}{2{y}_{1}})^{2}}•\sqrt{9+(-\frac{3}{{y}_{1}}-\frac{3{x}_{1}}{2{y}_{1}})}}$,
cos<$\overrightarrow{{F}_{2}N},\overrightarrow{{F}_{2}M}$>=$\frac{\overrightarrow{{F}_{2}N}•\overrightarrow{{F}_{2}M}}{|\overrightarrow{{F}_{2}N}|•|\overrightarrow{{F}_{2}M}|}$=$\frac{-3+\frac{9}{{{y}_{1}}^{2}}-\frac{9{{x}_{1}}^{2}}{4{{y}_{1}}^{2}}}{\sqrt{9+(\frac{3}{{y}_{1}}-\frac{3{x}_{1}}{2{y}_{1}})^{2}}•\sqrt{9+(-\frac{3}{{y}_{1}}-\frac{3{x}_{1}}{2{y}_{1}})}}$,
∴∠MF1N=∠MF2N,又∠F1CF2=∠MCN,∴△F1CN∽△F2CM,
∴$\frac{O{F}_{2}}{O{F}_{1}}=\frac{OM}{ON}$,∴$\frac{O{F}_{2}}{OM}=\frac{O{F}_{1}}{ON}$,
又∠F1ON=∠F2OM,∴△F1ON∽△F2OM,∴∠F2F1M=∠F2NM,
∴∠F2F1N+∠NMF2=∠F2F1M+∠MF1N+∠NMF2=∠F2NM+∠MF2N+∠NMF2=180°.
∴F1,F2,M,N四点共圆.

点评 本题考查两直线斜率乘积的求法,考查四点共圆的证明,是中档题,解题时要认真审题,注意椭圆、直线方程、相似三角形、向量等知识点的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.求y=$\frac{\frac{1}{2}{e}^{x}-1}{{e}^{x}+1}$(x>-1)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为(  )
A.$({2\sqrt{2}+2})π+96$B.$({2\sqrt{2}+1})π+96$C.$({\sqrt{2}+2})π+96$D.$({\sqrt{2}+1})π+96$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设函数f(x)满足:f(x)=f($\frac{1}{x}$)•1gx+1,则函数f(x)=$\frac{lgx+1}{l{g}^{2}x+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设向量$\overrightarrow{a}$=(λ,λ-2),$\overrightarrow{b}$=(1,2),若(2$\overrightarrow{a}$+$\overrightarrow{b}$)⊥($\overrightarrow{a}$-$\overrightarrow{b}$),则λ=(  )
A.-1或$-\frac{7}{4}$B.-1或$\frac{7}{4}$C.1或-$\frac{7}{4}$D.1或$\frac{7}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)若函数g(x)=f($\sqrt{x}$)+ax+2在(e2,+∞)单调递减,求a的取值范围;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=$\frac{{{x_1}+{x_2}}}{2}$时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知p:y=ax(a>0,且a≠1)在R上为增函数,q:直线3x+4y+a=0与圆x2+y2=1相交.若p真q假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知随机变量X~N(2,σ2),若P(X<a)=0.3,则P(a≤X<4-a)=0.4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=a(x-1)lnx+1(a∈R).
(1)讨论函数f(x)的单调性;
(2)若x∈(1,+∞),f(x)>x-alnx恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案