精英家教网 > 高中数学 > 题目详情
若l,m为空间两条不同的直线,α,β为空间两个不同的平面,则l丄α的一个充分条件是(  )
A、l∥β且α丄β
B、l?β且α丄β
C、l丄β且α∥β
D、l丄m且m∥α
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:根据线面垂直的定义和判定定理,利用充分条件和必要条件的定义进行判断即可得到结论.
解答: 解:A.若l∥β且α丄β,则l丄α不一定成立,
B.若l?β且α丄β,则l丄α不一定成立
C.若l丄β且α∥β,则l丄α一定成立
D.若l丄m且m∥α,则l丄α不一定成立
故选:C.
点评:本题主要考查充分条件和必要条件的判定,利用线面垂直的定义和判定定理是解决本题的关键,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知AB是⊙O的直径,弦CD与AB交于点E,过点A作圆的切线与CD的延长线交于点F,如果DE=
3
4
CE,AC=8
5
,D为EF的中点,则AB=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

π
2
<a<π,sinα=
4
5
,则
sin2α+sin2α
cos2α+cos2α
的值为(  )
A、8B、10C、-4D、-20

查看答案和解析>>

科目:高中数学 来源: 题型:

某地区对两所高中学校进行学生体质状况抽测,甲校有学生800人,乙校有学生500人,现用分层抽样的方法在这1300名学生中抽取一个样本.已知在甲校抽取了48人,则在乙校应抽取学生人数为(  )
A、48B、36C、30D、24

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆x2+y2-2y-5=0关于直线ax+by+c-1=0(b>0,c>0)对称,则
4
b
+
1
c
的最小值为(  )
A、9B、8C、4D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b为实数,则“2a>2b”是“a2>b2”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(3,
3
),O是坐标原点,点P(x,y)的坐标满足
3
x-y≤0
x-
3
y+2≥0
y≥0
OP
OA
上的投影的最大值为(  )
A、
3
B、3
C、2
3
D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

要得到函数y=cos(2x-
π
3
)的图象,只需将函数y=sin(2x)的图象(  )
A、左移
π
12
个单位
B、右移
π
12
个单位
C、左移
12
个单位
D、右移
12
个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

某产品生产成本C万元与产量q件(q∈N*)的函数关系式为C=100+4q,销售单价p万元与产量q件的函数关系式为p=25-
1
4
q
.当产量为多少件时,每件产品的平均利润最大,且最大值为多少?

查看答案和解析>>

同步练习册答案