精英家教网 > 高中数学 > 题目详情
点P为圆x2+y2=4上的动点,则点P到直线3x-4y-30=0的距离的最小值为
 
考点:点到直线的距离公式
专题:直线与圆
分析:由圆心到直线的距离减去半径得答案.
解答: 解:圆x2+y2=4的圆心为(0,0),半径为2,
(0,0)到3x-4y-30=0的距离为
|-30|
32+(-4)2
=6

∴点P到直线3x-4y-30=0的距离的最小值为4.
故答案为:4.
点评:本题考查了的到直线的距离,是基础的计算题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

解下列关于x的不等式:
(1)(ax-2)(x+1)>0;
(2)(1-ax)2<1;
(3)12x2-ax>a2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C的圆心C在直线2x-y-7=0上,且与y轴交于点M(0,-4)和N(0,-2).
(Ⅰ)求圆C的方程;
(Ⅱ)若直线x+2y+m=0与圆C交于A、B两点,以CA、CB为邻边作平行四边形ACBD,且点D也在圆C上,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f为(0,+∞)→(0,+∞)的函数,对任意正实数x,f(5x)=5f(x),f(x)=2-|x-3|,1≤x≤5,则使得f(x)=f(665)的最小实数x为(  )
A、45B、65C、85D、165

查看答案和解析>>

科目:高中数学 来源: 题型:

若曲线y=
1-x2
与直线kx-y+1=3k有交点,则k的取值范围是(  )
A、[0,
1
2
]
B、(-∞,0)∪[
1
2
,+∞)
C、(0,
1
2
D、(-∞,0))∪(
1
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:不等式(a-2)x2+2(a-2)x-4<0,对?x∈R恒成立;命题q:关于x的方程x2+(a-1)x+1=0的一个根在(0,1)上,另一个根在(1,2)上,若p∨q为真命题,p∧q为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=2x-2-x+2,则f(2)等于(  )
A、2
B、
15
4
C、4
D、
17
4

查看答案和解析>>

科目:高中数学 来源: 题型:

满足不等式a3>(-3)3的实数a的取值范围是(  )
A、(-3,+∞)
B、(-∞,-3)
C、(3,+∞)
D、(-3,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

在各项均为正数的等比数列{an}中,若a2•a4=9,则log 
1
3
a1+log 
1
3
a2+log 
1
3
a3+log 
1
3
a4+log 
1
3
a5的值为(  )
A、6B、5C、-6D、-5

查看答案和解析>>

同步练习册答案