精英家教网 > 高中数学 > 题目详情
7.若A、B、C、D、E、F六个元素排成一列,要求A排在左端,B、C相邻,则不同的排法有(  )
A.48种B.72种C.96种D.120种

分析 把B,C看做一个整体,有2种方法;6个元素变成了5个,先排A,由于要求A排在左端,则A有1种方法,其余的4个元素任意排,有A44种不同方法.根据分步计数原理求出所有不同的排法种数.

解答 解:由于B,C相邻,把B,C看做一个整体,有2种方法.这样,6个元素变成了5个.
先排A,由于要求A排在左端,则A有1种方法.
其余的4个元素任意排,有A44种不同方法,
故不同的排法有 2×A44=48种,
故选:A.

点评 本题主要考查排列、组合以及简单计数原理的应用,注意把特殊元素与位置优先排列,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图,四棱锥P-ABCD中,底面ABCD为菱形,∠DAB=$\frac{π}{3}$,△ADP为等边三角形.
(1)求证:AD⊥PB;
(2)若AB=2,BP=$\sqrt{6}$,求点D到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定义在(0,+∞)上的单调函数f(x),?x∈(0,+∞),f[f(x)-lnx]=1,则方程f(x)-f′(x)=1的解所在区间是(  )
A.(0,$\frac{1}{2}}$)B.(${\frac{1}{2}$,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=ax2-3x+b,若f(x)>0的解集为{x|x<1或x>2}.
(1)解不等式$\frac{x-c}{ax-b}$>0(c为常数);
(2)若bx-1>m(ax2-1)在m∈[-2,2]上恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱锥P-ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD是等边三角形,且平面PAD⊥底面ABCD,G为AD的中点.
(1)求证:BG⊥PD;
(2)求 点G到平面PAB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若点P在线段P1P2的延长线上,P1(4,-3),P2(-2,6),且|$\overrightarrow{{P}_{1}P}$|=4|$\overrightarrow{P{P}_{2}}$|,则点P的坐标为(-4,9).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.多项式(x1+x2+…xnk(n,k∈N*)展开式中共有${C}_{k+n-1}^{n-1}$项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知某品牌手机公司生产某款手机的年固定成本为40万美元,每生产1万部还需另投入16万美元.设公司一年内共生产该款手机x万部并全部销售完,每万部的销售收入为R(x)万美元,且R(x)=$\left\{{\begin{array}{l}{400-6x,0<x≤40}\\{\frac{8000}{x}-\frac{57600}{x^2},x>40}\end{array}}\right.$.
(Ⅰ)写出年利润f(x)(万美元)关于年产量x(万部)的函数解析式;
(Ⅱ)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某集团公司为了获得更大的收益,决定以后每年投入一笔资金用于广告促销.经过市场调查,每年投入广告费t百万元,可增加销售额约(2t+$\frac{5}{t+2}$-$\frac{5}{2}$)百万元(t≥0).
(1)若公司当年新增收益不少于1.5百万元,求每年投放广告费至少多少百万元?
(2)现公司准备投入6百万元分别用于当年广告费和新产品开发,经预测,每投入新产品开发费x百万元,可增加销售额约($\frac{21}{x-8}$+3x+$\frac{21}{8}$)百万元,问如何分配这笔资金,使该公司获得新增收益最大?(新增收益=新增销售额-投入)

查看答案和解析>>

同步练习册答案