精英家教网 > 高中数学 > 题目详情
9.如图:已知四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点,求证:
(1)PC∥平面EBD;
(2)BC⊥平面PCD.

分析 (1)连BD,与AC交于O,利用三角形的中位线,可得线线平行,从而可得线面平行;
(2)证明BC⊥PD,BC⊥CD,即可证明BC⊥平面PCD.

解答 证明:(1)连BD,与AC交于O,连接EO

∵ABCD是正方形,∴O是AC的中点,
∵E是PA的中点,
∴EO∥PC
又∵EO?平面EBD,PC?平面EBD
∴PC∥平面EBD;
(2)∵PD⊥平面ABCD,BC?平面ABCD
∴BC⊥PD
∵ABCD是正方形,∴BC⊥CD
又∵PD∩CD=D
∴BC⊥平面PCD.

点评 本题考查线面平行、线面垂直的判定,掌握线面平行、线面垂直的判定方法是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.下列有关命题的说法正确的是(  )
A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”
B.“x=-1”是“x2-5x-6=0”的必要不充分条件
C.命题“$?{x_0}∈R,x_0^2+{x_0}+1<0$”的否定是“?x∈R,x2+x+1<0”
D.命题“若x=y,则sinx=siny”的逆否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设常数θ∈(0,$\frac{π}{2}$),函数f(x)=2cos2(θ-$\frac{3}{2}$x)-1,且对任意实数x,f(x)=f($\frac{π}{3}$-x)恒成立.
(1)求θ值;
(2)试把f(x)表示成关于sinx的关系式;
(3)若x∈(0,π)时,不等式f(x)>2a•f($\frac{2x}{3}$)-13f($\frac{x}{3}$)恒成立,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.我国古代有着辉煌的数学研究成果.《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、…、《辑古算经》等算经十书,有着十分丰富多彩的内容,是了解我国古代数学的重要文献.这10部专著中有7部产生于魏晋南北朝时期.某中学拟从这10部名著中选择2部作为“数学文化”校本课程学习内容,则所选2部名著中至少有一部是魏晋南北朝时期的名著的概率为$\frac{14}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知动圆P与圆$E:{({x+\sqrt{3}})^2}+{y^2}=25$相切,且与圆$F:{({x-\sqrt{3}})^2}+{y^2}=1$都内切,记圆心P的轨迹为曲线C.
(1)求曲线C的方程;
(2)直线l与曲线C交于点A,B,点M为线段AB的中点,若|OM|=1,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.对于实数a,b,c,下列结论中正确的是(  )
A.若a>b,则ac2>bc2B.若a>b>0,则$\frac{1}{a}$>$\frac{1}{b}$
C.若a<b,则a2<b2D.若ab>0,a>b则$\frac{1}{a}$<$\frac{1}{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若y=f(x)是幂函数,且满足f(4)=2f(2),则f(3)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,已知a:b:c=3:2:4,那么cosC=(  )
A.$\frac{1}{4}$B.$\frac{2}{3}$C.-$\frac{2}{3}$D.-$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若关于x的一元二次方程x2+ax-2=0有两个不相等的实根x1,x2,且x1<-1,x2>1,则实数a的取值范围是(  )
A.a<-1B.a>1C.-1<a<1D.a>2$\sqrt{2}$或a<-2$\sqrt{2}$

查看答案和解析>>

同步练习册答案