分析 (1)根据已知条件,求解该数列的前两项,可得数列{an}的通项公式;
(2)根据所给的等式确定m的值.
解答 解:(1)∵数列{an}的奇数项成等差数列,偶数项成等比数列,公差与公比均为2,
∴a3=a1+2,a5=a1+4,a7=a1+6,
a4=2a2,a6=4a2,
∵a2+a4=a1+a5,a4+a7=a6+a3
∴a2+2a2=a1+4+a1,2a2+6+a1=4a2+2+a1
∴a1=1,a2=2,
∴an=$\left\{\begin{array}{l}{n,n为奇数}\\{{2}^{\frac{n}{2},n为偶数}}\end{array}\right.$;
(2)∵am•am+1•am+2=am+am+1+am+2成立,
∴由上面可以知数列{an}为:1,2,3,4,5,8,7,16,9,…
当m=1时等式成立,即 1+2+3=-6=1×2×3;等式成立.
当m=2时等式成立,即2×3×4≠2+3+4;等式不成立.
当m=3、4时等式不成立;
当m≥5时,
∵am•am+1•am+2为偶数,am+am+1+am+2为奇数,
∴可得m取其它值时,不成立,
∴m=1时成立.
点评 本题重点考查了等差数列的概念和基本性质、等比数列的概念和基本性质等知识,属于中档题.解题关键是准确应用等差和等比数列的基本性质求解问题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{3}$ | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3π | B. | 4π | C. | 3$\sqrt{3}$π | D. | 16π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\sqrt{2}$,0) | B. | (0,$\sqrt{2}$,$\sqrt{3}$) | C. | (1,0,$\sqrt{3}$) | D. | (1,$\sqrt{2}$,0) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com