精英家教网 > 高中数学 > 题目详情
已知函数f(2x-1)=4x2,则f(2)=
 
考点:函数的值
专题:计算题,函数的性质及应用
分析:令2x-1=2,解得x的值,再把解析式中的x换成此值求得f(2).
解答: 解:由题意得,f(2x-1)=4x2
令2x-1=2,解得x=
3
2
,则f(2)=4×(
3
2
)
2
=9,
故答案为:9.
点评:本题考查求函数的值,以及整体思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

要测量底部不能到达的东方明珠电视塔的高度,在黄浦江西岸选择甲、乙两观测点,在甲、乙两点测得塔顶的仰角分别为45°、30°,在水平面上测得电视塔与甲地连线及甲、乙两地连线所成的角为120°,甲、乙两地相距500米,则电视塔在这次测量中的高度是(  )
A、100
2
B、400米
C、200
3
D、500米

查看答案和解析>>

科目:高中数学 来源: 题型:

小白被“老大”找到了!小伙伴们喜大普奔啊有木有!为了答谢“老大”,小新他们决定帮助“老大”做一件事,就是调查双叶幼稚园小朋友在20:00~21:00时间段在做什么?最后小新等做成了下面的数据表:
看电视看书合计
25530
101020
合计351550
(1)将此样本的频率作为总体的概率估计,随机调查3名男性小朋友,设调查的3名男性小朋友在这一时间段以看电视的人数为随机变量X,求X的分布列和期望;
(2)根据以上数据,吉永老师能否有99%的把握认为“在20:00~21:00时间段的休闲方式与性别有关系”?
参考公式:K=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.
参考数据:
P(K2≥k00.150.100.050.0250.010
k02.0722.7063.8415.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的图象与直线x=a,x=b及x轴所围成图形的面积称为函数f(x)在[a,b]上的面积,已知函数y=sinnx在[0,
π
n
]上的面积为
2
n
(n∈N*).则
(i)y=sin2x在[0,π]上的面积为
 

(ii)y=sin(3x-π)+2在[
π
3
3
]上的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知,在△ABC中,D是AB上一点,△ACD的外接圆交BC于E,AB=2BE.
(Ⅰ)求证:BC=2BD;
(Ⅱ)若CD平分∠ACB,且AC=2,EC=1,求BD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

对任意实数x,不等式|x-1|-|x-2|>a恒成立,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn是各项为正数的等比数列{an}的前n项和,若S10=10,S20=30,则S40=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>b,则下列不等式成立的是(  )
A、
a2
b2
B、log2a>log2b
C、
1
a
1
b
D、2a>2b

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={x|sinx>cosx,0<x<π}和N={x|sin2x>cos2x,0<x<π},则M与N的交集为(  )
A、(
π
8
,π)
B、(
π
4
8
C、(
π
8
8
D、(
π
4
,π)

查看答案和解析>>

同步练习册答案