精英家教网 > 高中数学 > 题目详情
已知两个动点A、B和一个定点M(x0,y0)均在抛物线y2=2px(p>0)上,设F为此抛物线的焦点,Q为其对称轴上一点,若(
QA
+
1
2
AB
)•
AB
=0,且|
FA
|,|
FM
|,|
FB
|成等差数列.
(1)求
OQ
的坐标;
(2)若|
OQ
|=3,|
FM
|=2,求|
AB
|的取值范围.
考点:平面向量数量积的运算,向量的模
专题:平面向量及应用,圆锥曲线的定义、性质与方程
分析:(1)设A(x1,y1),B(x2,y2).利用焦半径公式及其|
FA
|,|
FM
|,|
FB
|成等差数列可得:2|
FM
|=|
FB
|+|
FA
|
,得到2x0=x1+x2.由(
QA
+
1
2
AB
)•
AB
=0,可得(
QA
+
QB
)•
AB
=0,设Q(m,0),得到(x1-m+x2-m,y1+y2)•(x2-x1,y2-y1)=0,可得x1+x2-2m+2p=0.可得m=x0+p.
(2)由|
OQ
|=3,可得p+x0=3.利用|
FM
|
=2,可得x0+
p
2
=2,联立解得x0=1,p=2.y2=4x.x1+x2=2.取M(1,2).由QM⊥AB.可得kQMkAB=-1,kAB=1=
y1-y2
x1-x2
.|AB|=
(x1-x2)2+(y1-y2)2
=
2(4-4x1x2)

由0≤x1x2<1即可得出.
解答: 解:(1)设A(x1,y1),B(x2,y2).
则|FA|=x1+
p
2
|FB|=x2+
p
2
,|FM|=x0+
p
2

∵|
FA
|,|
FM
|,|
FB
|成等差数列.
∴2|
FM
|=|
FB
|+|
FA
|

2(x0+
p
2
)
=x1+
p
2
+x2+
p
2

∴2x0=x1+x2
∵(
QA
+
1
2
AB
)•
AB
=0,
(
QA
+
QB
)•
AB
=0,
设Q(m,0),则(x1-m+x2-m,y1+y2)•(x2-x1,y2-y1)=0,
∴(x1+x2-2m)(x2-x1)+
y
2
2
-
y
2
1
=0,
∴(x1+x2-2m)(x2-x1)+2p(x2-x1)=0,
∵x1≠x2
∴x1+x2-2m+2p=0.
∴m=x0+p
∴Q(p+x0,0).
OQ
=(p+x0,0).
(2)∵|
OQ
|=3,∴p+x0=3.
|
FM
|
=2,∴x0+
p
2
=2,
联立解得x0=1,p=2.
∴y2=4x.x1+x2=2.
Q(3,0),取M(1,2).
kQM=-1.
由(1)可得QM⊥AB.
kQMkAB=-1,
∴kAB=1=
y1-y2
x1-x2

∴|AB|=
(x1-x2)2+(y1-y2)2
=
2[(x1+x2)2-4x1x2]
=
2(4-4x1x2)

∵x1,x2≥0,x1+x2=2>2
x1x2

∴0≤x1x2<1.
0<|AB|≤2
2

0<|AB|≤2
2
点评:本题考查了抛物线的标准方程及其性质、向量的坐标运算、数量积的性质、相互垂直的直线斜率之间的关系、弦长公式、基本不等式的性质,考查了推理能力和计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义y=log(1+x)F(x,y),x>0,y>0.
(1)比较F(1,3)与F(2,2)的大小;
(2)若e<x<y,证明:F(x-1,y)>F(y-1,x);
(3)设函数f(x)=F[1,log2(x3+ax2+bx+1)]的图象为曲线C.曲线C在x0处的切线的斜率为k,若x0∈(1,1-a)且存在实数b使得k=-4,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某商店为了吸引顾客,设计了一个摸球小游戏,顾客从装有1个红球,1个白球,3个黑球的袋中一次随机的摸2个球,设计奖励方式如下表:
结果奖励
1红1白10元
1红1黑5元
2黑2元
1白1黑不获奖
(1)某顾客在一次摸球中获得奖励X元,求X的概率分布表与数学期望;
(2)某顾客参与两次摸球,求他能中奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)的定义域为R,已知f(x-y)=f(x)g(y)-g(x)f(y),且f(2)=f(-1)≠0,求g(-1)+g(1).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+(m-1)x+1.
(Ⅰ)若方程f(x)=0有两个不相等的实数根,求实数m的取值范围;
(Ⅱ)若关于x的不等式f(x)<0的解集为(x1,x2),且0<|x1-x2|<2
3
,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求值:
(1)log327+lg40+lg25-lne2 
(2)(
2
3
-2+(1-
2
0-(3
3
8
 
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

甲乙两位同学参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
甲 82  81  79  78  95  88  93  84
乙 92  95  80  75  83  80  90  85
(1)用茎叶图表示这两组数据;
(2)现要选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?
(3)若将频率视为概率,求甲同学在今后的数学竞赛成绩高于80的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)对一切实数x,y均有f(x+y)-f(y)=(x+2y+1)x成立,且f(1)=0.
(Ⅰ)求f(0)的值;
(Ⅱ)求函数f(x)的解析式;
(Ⅲ)对任意的x1∈(0,
1
2
),x2∈(0,
1
2
),都有f(x1)+2<logax2成立时,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x∈N|0<x<3},则集合A的子集的个数为
 
个.

查看答案和解析>>

同步练习册答案