精英家教网 > 高中数学 > 题目详情
函数f(x)对一切实数x,y均有f(x+y)-f(y)=(x+2y+1)x成立,且f(1)=0.
(Ⅰ)求f(0)的值;
(Ⅱ)求函数f(x)的解析式;
(Ⅲ)对任意的x1∈(0,
1
2
),x2∈(0,
1
2
),都有f(x1)+2<logax2成立时,求a的取值范围.
考点:抽象函数及其应用
专题:计算题,函数的性质及应用,不等式的解法及应用
分析:(Ⅰ)令x=1,y=0,即可得到f(0);
(Ⅱ)由条件,令y=0,结合f(0),即可得到f(x)的表达式;
(Ⅲ)求出f(x1)+2在x1∈(0,
1
2
)上递增,得到f(x1)+2∈(0,
3
4
),再对a讨论,应用恒成立思想:最大值不小于最小值,即可得到答案.
解答: 解:(Ⅰ)由f(x+y)-f(y)=(x+2y+1)x,
令x=1,y=0,得f(1)-f(0)=2,
又f(1)=0,则f(0)=-2;
(Ⅱ)由f(x+y)-f(y)=(x+2y+1)x,
令y=0,得f(x)-f(0)=x(x+1).
由f(0)=-2,则f(x)=x2+x-2;
(Ⅲ)∵x1∈(0,
1
2
),
∴f(x1)+2=x12+x1=(x1+
1
2
2-
1
4
在x1∈(0,
1
2
)上递增,
∴f(x1)+2∈(0,
3
4
),
要使任意的x1∈(0,
1
2
),x2∈(0,
1
2
),都有f(x1)+2<logax2成立,
当a>1时,logax2<loga
1
2
,显然不成立;
当0<a<1时,logax2>loga
1
2
,则
0<a<1
loga
1
2
3
4
,解得
34
4
≤a<1.
综上,a的取值范围是[
34
4
,1).
点评:本题考查抽象函数及应用,考查解决抽象函数的常用方法:赋值法,考查不等式的恒成立问题,转化为求函数最值问题,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|x>0},B={x|x2-(a+b)x+ab<0,a,b∈R},D=A∩B,函数f(x)=x3+x2+bx+1
(1)当b=1时,求函数f(x)在点(1,f(1))处的切线方程;
(2)当a=b+1,且f(x)在D上有极小值时,求b的取值范围;
(3)在(2)的条件下,不等式f(x)≤1对任意的x∈D恒成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两个动点A、B和一个定点M(x0,y0)均在抛物线y2=2px(p>0)上,设F为此抛物线的焦点,Q为其对称轴上一点,若(
QA
+
1
2
AB
)•
AB
=0,且|
FA
|,|
FM
|,|
FB
|成等差数列.
(1)求
OQ
的坐标;
(2)若|
OQ
|=3,|
FM
|=2,求|
AB
|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高三某班的一次测试成绩的频率分布表以及频率分布直方图中的部分数据如下,请根据此解答如下问题:
(1)求班级的总人数;
(2)将频率分布表及频率分布直方图的空余位置补充完整;
(3)若要从分数在[80,100)之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100)之间的概率.
分组频数频率
[50,60) 0.08
[60,70)7 
[70,80)10 
[80,90)  
[90,100)2 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:x2=4y的焦点为F,过点K(0,-1)的直线l与C相交于A,B两点,点A关于y轴的对称点为D.
(Ⅰ)证明:点F在直线BD上;
(Ⅱ)设
FA
FB
=
8
9
,求∠DBK的平分线与y轴的交点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

x2+ax-2
x2-x+1
<2恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知四棱锥的底面是正方形,侧面都是高为
3
的等边三角形,求这个四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三角形ABC中,已知AB=3,A=120°,△ABC的面积为
15
3
4
,则
BC
BA
的值=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l1和l2是圆x2+y2=2的两条切线.若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于
 

查看答案和解析>>

同步练习册答案