精英家教网 > 高中数学 > 题目详情
12.如图所示的程序框图,若输入的x的值是1,则输出的结果为4

分析 模拟执行程序,依次写出每次循环得到的x,i的值,当x=53时满足条件x≥26,退出循环,输出i的值为4,从而得解.

解答 解:模拟执行程序,可得
x=1,i=1
x=5,i=2
不满足条件x≥26,x=17,i=3
不满足条件x≥26,x=53,i=4
满足条件x≥26,退出循环,输出i的值为4.
故答案为:4.

点评 本题主要考查了程序框图和算法,依次写出每次循环得到的x,i的值是解题的关键,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.计算下列定积分:
(1)${∫}_{1}^{4}$$\frac{x-{x}^{2}}{\sqrt{x}+x}$dx;
(2)${∫}_{0}^{2}$(2-|1-x|)dx;
(3)${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$(sinx-cosx)dx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知F2、F1是双曲线$\frac{{y}^{2}}{{a}^{2}}-\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的上、下焦点,点F2关于渐近线的对称点恰好落在以F1为圆心,|OF1|为半径的圆上,则双曲线的离心率为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.规定:坐标轴绕着原点逆时针旋转的角度为正角,顺时针旋转的角度为负角,不改变坐标轴的原点和长度单位,只将两坐标轴旋转同一个角度θ,这种坐标轴的变换叫做坐标轴的θ角旋转,简称转轴θ,将平面直角坐标系O-xy转轴θ得到新坐标系O-x′y′,设点P在两个坐标系中的坐标分别为(x,y)和(x′,y′),则下列结论中错误的是①②③(把你认为错误的所有结论的序号都填上)
①与x轴垂直的直线转轴后一定与x'轴垂直;②当θ=$\frac{π}{4}$时,点P(1,1)在新坐标系中的坐标为P(1,0);③当θ=-$\frac{π}{4}$时,反比例函数y=$\frac{1}{x}$的图象经过转轴后的标准方程是x′2-y′2=2
④当θ=$\frac{π}{6}$时,直线x=2的图象经过转轴后的直线方程是$\sqrt{3}$x′-y′-4=0
⑤点P在两个坐标系中坐标之间的关系是$\left\{\begin{array}{l}x=x'cosθ-y'sinθ\\ y=x'sinθ+y'cosθ\end{array}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知等差数列{an}的前9项的和为27,则${2^{{a_2}+{a_8}}}$=(  )
A.16B.2C.6 4D.128

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.执行如图所示的程序框图,当输出值为4时,输入x的值为(  )
A.-2或-3B.2或-3C.±2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,角A,B,C所对的边分别为a,b,c,且a=1,B=45°,S△ABC=2,则 b等于(  )
A.$4\sqrt{2}$B.5C.41D.$5\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若变量x,y满足约束条件$\left\{\begin{array}{l}y-4≤0\\ x+y-4≤0\\ x-y≤0\end{array}\right.$则z=2x+y的最大值是6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在直角坐标系xoy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=1+\sqrt{3}cosθ}\\{y=\sqrt{3}sinθ}\end{array}$(其中θ为参数),点M是曲线C1上的动点,点P在曲线C2上,且满足$\overrightarrow{OP}$=2$\overrightarrow{OM}$.
(Ⅰ)求曲线C2的普通方程;
(Ⅱ)以原点O为极点,x轴的正半轴为极轴建立极坐标系,射线θ=$\frac{π}{3}$,与曲线C1,C2分别交于A,B两点,求|AB|.

查看答案和解析>>

同步练习册答案