精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=-x2+ax-b(a、b∈R)的值域为(-∞,0],若关于x的不等式f(x)>c的解集为(t,t+4)(t∈R),则实数c的值为-4.

分析 本题可以利用一元二次不等式与方程的关系研究,得到方程的根与解集的关系,利用两根之差为定值,求出实数c的值,得到本题结论.

解答 解:∵函数f(x)=-x2+ax-b(a、b∈R)的值域为(-∞,0],
∴△=0,
∴a2-4b=0,
∴b=$\frac{{a}^{2}}{4}$.
∵关于x的不等式f(x)>c的解集为(t,t+4),
∴方程f(x)=c的两根分别为:t,t+4,
即方程:-x2+ax-$\frac{{a}^{2}}{4}$=c两根分别为:t,t+4,
∵方程:-x2+ax-$\frac{{a}^{2}}{4}$=c的根为:
x=$\frac{a±2\sqrt{-c}}{2}$,
∴两根之差为:2$\sqrt{-c}$=t-(t-4),
c=-4.
故答案为:-4.

点评 本题考查了一元二次不等式与方程的关系,本题难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.某校开展绘画比赛,9位评委为参赛作品A给出的分数如茎叶图所示.记分员在去掉一个最高分和一个最低分后,算得平均分为91,但复核员在复核时,发现有一个数字(茎叶图中的x)无法看清.若记分员计算无误,则数字x应该是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在多面体ABCDE中,CD和BE都垂直于平面ABC,且∠ACB=90°,AB=4,BE=1,CD=3,DE=2$\sqrt{2}$.
(Ⅰ)求证:BE∥平面ACD;
(Ⅱ)求多面体ABCDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.执行如图所示的程序框图,若将判断框内“S>100”改为关于n的不等式“n≥n0”且要求输出的结果不变,则正整数n0的取值(  )
A.是4B.是5C.是6D.不唯一

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知圆M:(x+2)2+y2=32及定点N(2,0),点P是圆M上的动点,点G在MP上,且满足|GP|=|GN|,G点的轨迹为曲线C.
(1)求曲线C的方程;
(2)设Q点是曲线C上异于曲线C与x轴交点的任意一点,试问在x轴上是否存在两个定点A,B使直线QA,QB的斜率之积为定值?若存在,求出所有符合条件的两个定点的坐标及定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.A,B分别为二面角α-l-β的面α内及棱l上的点,AB与l成45°角,AB与β成30°角,求二面角α-l-β的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=ex-ax+a(a∈R),其图象与x轴交于A(x1,0),B(x2,0)两点,且x1<x2
(1)求a的取值范围;
(2)证明:$f'({\sqrt{{x_1}{x_2}}})\;<0$(f′(x)为函数f(x)的导函数);
(3)设点C在函数y=f(x)的图象上,且△ABC为等腰直角三角形,记$\sqrt{\frac{{{x_2}-1}}{{{x_1}-1}}}$=t,求(a-1)(t-1)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知a>0.函数f(x)=$\frac{a}{x}$+|lnx-a|,x∈[1,e2].
(1)当a=3时,求曲线y=f(x)在点(3,f(3))处的切线方程;
(2)若f(x)≤$\frac{3}{2}$恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.“抢红包“的网络游戏给2015年的春节增添了一份趣味.”掐女红包“有多种玩法,小明参加一种接龙红包游戏:小明在红包里装了9元现金,然后发给朋友A,并给出金额所在区间[1,9],让A猜(所猜金额为整数元;下同),如果A猜中,A将获得红包里的金额;如果A未猜中,A将当前的红包转发给朋友B,同时给出金额所在区间[6,9],让B猜,如果B猜中,A和B可以评分红包里的金额;如果B未猜中,B要将当前的红包转发个朋友C,同时给出金额所在区间[8,9],让C猜,如果C猜中,A、B和C可以评分红包里的金额;如果C未猜中,红包里的资金将退回小明的账户.
(Ⅰ)求A恰好得到3元的概率;
(Ⅱ)设A所获得的金额为X元,求X的分布列及数学期望;
(Ⅲ)从统计学的角度而言,A所获得的金额是否超过B和C两人所获得的金额之和?并说明理由.

查看答案和解析>>

同步练习册答案