精英家教网 > 高中数学 > 题目详情
2.执行如图所示的程序框图,若将判断框内“S>100”改为关于n的不等式“n≥n0”且要求输出的结果不变,则正整数n0的取值(  )
A.是4B.是5C.是6D.不唯一

分析 模拟执行程序框图,依次写出每次循环得到的n,s的值,当s=62+64=126时判断框中的条件满足,执行“是”路径,退出循环输出结果s为126,若将判断框内“S>100”改为关于n的不等式“n≥n0”且要求输出的结果不变,则条件6≥n0成立,可得正整数n0的取值为6.

解答 解:框图首先赋值n=1,s=2,执行n=1+1=2,s=2+4=6;
判断框中的条件不满足,执行n=2+1=3,s=6+8=14;
判断框中的条件不满足,执行n=3+1=4,s=14+16=30;
判断框中的条件不满足,执行n=4+1=5,s=30+32=62;
判断框中的条件不满足,执行n=5+1=6,s=62+64=126;
此时判断框中的条件满足,执行“是”路径,退出循环输出结果s为126.
若将判断框内“S>100”改为关于n的不等式“n≥n0”且要求输出的结果不变,
则条件6≥n0成立,可得正整数n0的取值为6.
故选:C.

点评 本题主要考查了循环结构的程序框图,正确判断退出循环的条件是解题的关键,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.若实数x,y满足不等式组$\left\{\begin{array}{l}x+3y-3≤0\\ x-y+1≥0\\ y≥-1\end{array}\right.$则z=2|x|+y的取值范围是(  )
A.[-1,3]B.[1,11]C.[1,3]D.[-1,11]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=2ln(x+1)+$\frac{x^2}{x+1}$.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)如果对所有的x≥0,都有f(x)≤ax,求a的最小值;
(Ⅲ)已知数列{an}中,a1=1,且(1-an+1)(1+an)=1,若数列{an}的前n项和为Sn,求证:Sn>$\frac{{{a_{n+1}}}}{{2{a_n}}}-ln{a_{n+1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在五张卡片上分别写出有2,3,4,5,6这5个数字,其中6可以当9使用,从中任取3张,组成三位数,这样的三位数个数为(  )
A.60个B.70个C.96个D.136个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题正确的是(  )
A.若α⊥γ,β⊥γ,则α∥βB.若m∥n,m∥α,则n∥α
C.若α∩β=n,m∥α,m∥β,则m∥nD.若m⊥α,m⊥n,则n∥α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,过其右焦点F且垂直于x轴的弦MN的长度为b.
(Ⅰ)求该椭圆的离心率;
(Ⅱ)已知点A的坐标为(0,b),椭圆上存在点P,Q,使得圆x2+y2=4内切于△APQ,求该椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=-x2+ax-b(a、b∈R)的值域为(-∞,0],若关于x的不等式f(x)>c的解集为(t,t+4)(t∈R),则实数c的值为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2+ax-lnx(a∈R).
(Ⅰ)当a=0时,求f(x)的单调区间与极值;
(Ⅱ)令g(x)=f(x)-x2,若函数g(x)在x∈(0,e]的最小值为3,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在边长为2的正方形ABCD中,E是边AB的中点,将△ADE沿DE折起使得平面ADE⊥平面BCDE,F是折叠后AC的中点.求二面角E-AB-D的平面角的余弦值.

查看答案和解析>>

同步练习册答案