精英家教网 > 高中数学 > 题目详情
11.设函数f(x)=$\frac{2-a}{2}$x2+ax-2lnx(a∈R)
(I)当a=0时,求函数f(x)的极值;
(Ⅱ)当a>4时,求函数f(x)的单调区间;
(Ⅲ)若对任意a∈(4,6)及任意x1,x2∈[1,2],ma+2ln2>|f(x1)-f(x2)|恒成立,求实数m 的取值范围.

分析 (Ⅰ)确定函数的定义域为(0,+∞),求导函数,确定函数的单调性,即可求得函数f (x)的极值;
(Ⅱ)求导函数,并分解,利用f′(x)<0,确定函数单调减区间;f′(x)>0,确定函数的单调增区间;
(Ⅲ)确定f(x)在[1,2]上单调递减,可得f(x)的最大值与最小值,进而利用分离参数法,可得,从而可求实数m的取值范围

解答 解:(Ⅰ)函数的定义域为(0,+∞),
当a=0时,f(x)=x2-2lnx,
f′(x)=2x-$\frac{2}{x}$=$\frac{2(x+1)(x-1)}{x}$,
令f′(x)=0,解x=1,
当0<x<1时,f′(x)<0;当x>1时,f′(x)>0.
∴f(x)极小值=f(1)=1,无极大值;
(Ⅱ)f′(x)=(2-a)x+a-$\frac{2}{x}$=$\frac{(2-a){x}^{2}+ax-2}{x}$=$\frac{(2-a)(x-\frac{2}{a-2})(x-1)}{x}$,
∵a>4,∴$\frac{2}{a-2}$<1,令f′(x)<0,得0<x<$\frac{2}{a-2}$或x>1,函数单调递减,
令f′(x)<0,得$\frac{2}{a-2}$<x<1,函数单调递增,
故当a>4时,f(x)在 (0,$\frac{2}{a-2}$),(1+∞)单调递减,在($\frac{2}{a-2}$,1)上单调递增,
(Ⅲ)由(Ⅱ)知,当a∈(4,6)时,f(x)在[1,2]上单调递减,
∴当x=1时,f(x)有最大值,当x=2时,f(x)有最小值,
|f(x1)-f(x2)|≤f(1)-f(2)=$\frac{a}{2}$-3+2ln2,
∴ma+2ln2>$\frac{a}{2}$-3+2ln2,
∵a>0,
∴m>$\frac{1}{2}$-$\frac{3}{a}$,
∵4<a<6,
∴-$\frac{1}{4}$<$\frac{1}{2}$-$\frac{3}{a}$<0,
∴m≥0
故实数m的取值范围[0,+∞).

点评 本题考查导数知识的运用,考查函数的单调性,考查函数的最值,考查恒成立问题,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.若实数x,y满足$\left\{\begin{array}{l}{x+y-3≥0}\\{x-y+1≥0}\\{3x-y-5≤0}\\{\;}\end{array}\right.$,则x2+y2的最小值为(  )
A.$\frac{3\sqrt{2}}{2}$B.$\frac{9}{2}$C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lnx-$\frac{ax}{2}$,(a>0)
(1)讨论函数f(x)的单调性;
(2)若对任意的a∈[1,2),都存在x0∈(0,1]使得不等式f(x0)+ea-$\frac{a}{2}$>m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)的定义域为{x|x∈R,且x≠0},若对任意的x都有f(x)+f(-x)=0,当x>0时,f(x)=log2x,则不等式f(x)>1的解集为(  )
A.(2,+∞)B.(1,+∞)C.($-\frac{1}{2}$,0)∪(2,+∞)D.(-1,0)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2-ax+2lnx.
(Ⅰ)若a=2,求曲线y=f(x)在点P(1,f(1))处的切线;
(Ⅱ)若函数y=f(x)在定义域上单调递增,求实数a的取值范围;
(Ⅲ)设f(x)有两个极值点x1,x2,若${x_1}∈(0,\frac{1}{e}]$,且f(x1)≥t+f(x2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f(x)在R上存在导函数f′(x),对于任意的实数x,有f(x)=3x2-f(-x),当x∈(-∞,0)时,f′(x)+$\frac{1}{2}$<3x,若f(m+3)-f(-m)≤9m+$\frac{27}{2}$,则实数m的取值范围是(  )
A.[-$\frac{1}{2}$,+∞)B.[-$\frac{3}{2}$,+∞)C.[-1,+∞)D.[-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知O为三角形ABC内一点,且满足$\overrightarrow{OA}$+λ$\overrightarrow{OB}$+(λ-1)$\overrightarrow{OC}$=$\overrightarrow{0}$.若△OAB的面积与△OAC的面积比值为$\frac{1}{3}$,则λ的值为(  )
A.$\frac{3}{2}$B.2C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图所示的正数数阵中,第一横行是公差为d的等差数列,奇数列均是公比为q1等比数列,偶数列均是公比为q2等比数列,已知a1,1=1,a1,4=7,a4,1=$\frac{1}{8}$,a2,4=2(a1,1+a2,2)则下列结论中不正确的是(  )
A.d+q1+q2=a2,5
B.a2,1+a2,3+a2,5+…+a2,21=$\frac{441}{2}$
C.a1,2+a3,2+a5,2+…+a21,2=411-1
D.ai,j=$\left\{\begin{array}{l}(2j-1){2^{1-i}},j为正奇数\\(2j-1){2^{i-1}},j为正偶数\end{array}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设集合A={x|x(x-3)<0},B={x|x-2≤0},则A∩B=(  )
A.(0,2]B.(0,2)C.(0,3)D.[2,3)

查看答案和解析>>

同步练习册答案