分析 (Ⅰ)确定函数的定义域为(0,+∞),求导函数,确定函数的单调性,即可求得函数f (x)的极值;
(Ⅱ)求导函数,并分解,利用f′(x)<0,确定函数单调减区间;f′(x)>0,确定函数的单调增区间;
(Ⅲ)确定f(x)在[1,2]上单调递减,可得f(x)的最大值与最小值,进而利用分离参数法,可得,从而可求实数m的取值范围
解答 解:(Ⅰ)函数的定义域为(0,+∞),
当a=0时,f(x)=x2-2lnx,
f′(x)=2x-$\frac{2}{x}$=$\frac{2(x+1)(x-1)}{x}$,
令f′(x)=0,解x=1,
当0<x<1时,f′(x)<0;当x>1时,f′(x)>0.
∴f(x)极小值=f(1)=1,无极大值;
(Ⅱ)f′(x)=(2-a)x+a-$\frac{2}{x}$=$\frac{(2-a){x}^{2}+ax-2}{x}$=$\frac{(2-a)(x-\frac{2}{a-2})(x-1)}{x}$,
∵a>4,∴$\frac{2}{a-2}$<1,令f′(x)<0,得0<x<$\frac{2}{a-2}$或x>1,函数单调递减,
令f′(x)<0,得$\frac{2}{a-2}$<x<1,函数单调递增,
故当a>4时,f(x)在 (0,$\frac{2}{a-2}$),(1+∞)单调递减,在($\frac{2}{a-2}$,1)上单调递增,
(Ⅲ)由(Ⅱ)知,当a∈(4,6)时,f(x)在[1,2]上单调递减,
∴当x=1时,f(x)有最大值,当x=2时,f(x)有最小值,
|f(x1)-f(x2)|≤f(1)-f(2)=$\frac{a}{2}$-3+2ln2,
∴ma+2ln2>$\frac{a}{2}$-3+2ln2,
∵a>0,
∴m>$\frac{1}{2}$-$\frac{3}{a}$,
∵4<a<6,
∴-$\frac{1}{4}$<$\frac{1}{2}$-$\frac{3}{a}$<0,
∴m≥0
故实数m的取值范围[0,+∞).
点评 本题考查导数知识的运用,考查函数的单调性,考查函数的最值,考查恒成立问题,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3\sqrt{2}}{2}$ | B. | $\frac{9}{2}$ | C. | $\sqrt{5}$ | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2,+∞) | B. | (1,+∞) | C. | ($-\frac{1}{2}$,0)∪(2,+∞) | D. | (-1,0)∪(1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{1}{2}$,+∞) | B. | [-$\frac{3}{2}$,+∞) | C. | [-1,+∞) | D. | [-2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | 2 | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | d+q1+q2=a2,5 | |
| B. | a2,1+a2,3+a2,5+…+a2,21=$\frac{441}{2}$ | |
| C. | a1,2+a3,2+a5,2+…+a21,2=411-1 | |
| D. | ai,j=$\left\{\begin{array}{l}(2j-1){2^{1-i}},j为正奇数\\(2j-1){2^{i-1}},j为正偶数\end{array}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com