精英家教网 > 高中数学 > 题目详情
20.如图所示的正数数阵中,第一横行是公差为d的等差数列,奇数列均是公比为q1等比数列,偶数列均是公比为q2等比数列,已知a1,1=1,a1,4=7,a4,1=$\frac{1}{8}$,a2,4=2(a1,1+a2,2)则下列结论中不正确的是(  )
A.d+q1+q2=a2,5
B.a2,1+a2,3+a2,5+…+a2,21=$\frac{441}{2}$
C.a1,2+a3,2+a5,2+…+a21,2=411-1
D.ai,j=$\left\{\begin{array}{l}(2j-1){2^{1-i}},j为正奇数\\(2j-1){2^{i-1}},j为正偶数\end{array}$

分析 由a1,1=1,a1,4=7,运用等差数列的通项公式可得d=2,a4,1=$\frac{1}{8}$,可得q1=$\frac{1}{2}$,由a2,4=2(a1,1+a2,2),运用等比数列的通项公式解得q2=2,对选项一一加以判断,运用等差数列和等比数列的通项公式和求和公式可得A,C,D正确;B不正确.

解答 解:由a1,1=1,a1,4=7,可得
a1,4=a1,1+3d,即有d=$\frac{7-1}{3}$=2,
即有a1,n=2n-1,
a4,1=$\frac{1}{8}$,即为a1,1•q13=$\frac{1}{8}$,
解得q1=$\frac{1}{2}$,
a2,2=a1,2•q2=3q2
a2,4=a1,4•q2=7q2
由a2,4=2(a1,1+a2,2),可得
7q2=2(1+3q2),解得q2=2,
对于A,d+q1+q2=2+$\frac{1}{2}$+2=$\frac{9}{2}$,a2,5=a1,5•$\frac{1}{2}$=$\frac{9}{2}$,
故A正确;
对于B,a2,1+a2,3+a2,5+…+a2,21=$\frac{1}{2}$+$\frac{5}{2}$+$\frac{9}{2}$+…+$\frac{41}{2}$
=$\frac{1}{2}$×11+$\frac{11×10}{2}$×2=$\frac{231}{2}$,故B不正确;
对于C,a1,2+a3,2+a5,2+…+a21,2=3+12+…+3•410
=$\frac{3(1-{4}^{11})}{1-4}$=411-1,故C正确;
对于D,当j为正奇数时,ai,j=(2j-1)a1,1•($\frac{1}{2}$)j-1=(2j-1)•21-j
当j为正偶数时,ai,j=(2j-1)a1,1•(2)j-1=(2j-1)•2j-1
故D正确.
故选:B.

点评 本题考查等差数列和等比数列的通项公式的运用,考查分类讨论的思想方法,以及运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知$\overrightarrow{a}$=(cos$\frac{π}{6}$,sin$\frac{π}{6}$),$\overrightarrow{b}$=(cos$\frac{5π}{6}$,sin$\frac{5π}{6}$),则|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=$\frac{2-a}{2}$x2+ax-2lnx(a∈R)
(I)当a=0时,求函数f(x)的极值;
(Ⅱ)当a>4时,求函数f(x)的单调区间;
(Ⅲ)若对任意a∈(4,6)及任意x1,x2∈[1,2],ma+2ln2>|f(x1)-f(x2)|恒成立,求实数m 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.P(x1,y1)、Q(x2,y2)分别为抛物线y2=4x上不同的两点,F为焦点,若|QF|=2|PF|,则(  )
A.x2=2x1+1B.x2=2x1C.y2=2y1+1D.y2=2y1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设f(x)在定义域上可导,则$\underset{lim}{△x→0}$$\frac{[f(x)]^{2}-[f(x-△x)]^{2}}{△x}$=(  )
A.f(x)f′(x)B.-f(x)f′(x)C.2f(x)f′(x)D.-2f(x)f′(x)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知奇函数f(x)满足对任意x∈R都有f(x+6)=f(x)+3成立,且f(1)=1,则f(2015)+f(2016)=2015.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设△ABC的内角A,B,C的对边分别为a,b,c,(a+b+c)(a-b+c)=-ac,AB=$\sqrt{2}$,A的角平分线AD=$\sqrt{3}$.
(1)求角B;
(2)边AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知实数x,y满足$\left\{\begin{array}{l}{x≥1}\\{x-2y+m≥0}\\{x-y≤0}\end{array}\right.$,若z=4x-y的最大值是最小值的15倍,则m等于(  )
A.5B.$\frac{33}{5}$C.7D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.不等式组$\left\{\begin{array}{l}{x-y≤0}\\{x+2y≤12}\\{x≥0}\end{array}\right.$表示的平面区域的整点(即横、纵坐标均为整数的点)的总数是(  )
A.23B.21C.19D.18

查看答案和解析>>

同步练习册答案