精英家教网 > 高中数学 > 题目详情
8.P(x1,y1)、Q(x2,y2)分别为抛物线y2=4x上不同的两点,F为焦点,若|QF|=2|PF|,则(  )
A.x2=2x1+1B.x2=2x1C.y2=2y1+1D.y2=2y1

分析 根据抛物线的性质将|PF|,|QF|转化为到准线的距离,得出答案.

解答 解:抛物线的准线方程为x=-1,
∴|PF|=x1+1,|QF|=x2+1.
∵|QF|=2|PF|,
∴x2+1=2(x1+1),即x2=2x1+1.
故选:A.

点评 本题考查了抛物线的性质,属于基础题题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.定义在R上的偶函数,f(x)满足:对任意的x1,x2∈(-∞,0](x1≠x2),有(x2-x1)[f(x2)-f(x1)]>0,则当n∈N*时,f(-n),f(n-1),f(n+1)的大小关系为f(n-1)>f(-n)>f(n+1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)的定义域为{x|x∈R,且x≠0},若对任意的x都有f(x)+f(-x)=0,当x>0时,f(x)=log2x,则不等式f(x)>1的解集为(  )
A.(2,+∞)B.(1,+∞)C.($-\frac{1}{2}$,0)∪(2,+∞)D.(-1,0)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f(x)在R上存在导函数f′(x),对于任意的实数x,有f(x)=3x2-f(-x),当x∈(-∞,0)时,f′(x)+$\frac{1}{2}$<3x,若f(m+3)-f(-m)≤9m+$\frac{27}{2}$,则实数m的取值范围是(  )
A.[-$\frac{1}{2}$,+∞)B.[-$\frac{3}{2}$,+∞)C.[-1,+∞)D.[-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知O为三角形ABC内一点,且满足$\overrightarrow{OA}$+λ$\overrightarrow{OB}$+(λ-1)$\overrightarrow{OC}$=$\overrightarrow{0}$.若△OAB的面积与△OAC的面积比值为$\frac{1}{3}$,则λ的值为(  )
A.$\frac{3}{2}$B.2C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.F为抛物线C:y2=4x的焦点,过点F的直线l与C交于A,B两点,C的准线与x轴的交点为E,动点P满足$\overrightarrow{EP}$=$\overrightarrow{EB}$+$\overrightarrow{EA}$.
(Ⅰ)求点P的轨迹方程;
(Ⅱ)当四边形EAPB的面积最小时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图所示的正数数阵中,第一横行是公差为d的等差数列,奇数列均是公比为q1等比数列,偶数列均是公比为q2等比数列,已知a1,1=1,a1,4=7,a4,1=$\frac{1}{8}$,a2,4=2(a1,1+a2,2)则下列结论中不正确的是(  )
A.d+q1+q2=a2,5
B.a2,1+a2,3+a2,5+…+a2,21=$\frac{441}{2}$
C.a1,2+a3,2+a5,2+…+a21,2=411-1
D.ai,j=$\left\{\begin{array}{l}(2j-1){2^{1-i}},j为正奇数\\(2j-1){2^{i-1}},j为正偶数\end{array}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在半径为30cm的半圆形铁皮上截取一块矩形材料A(点A,B在直径上,点C,D在半圆周上),并将其卷成一个以AD为母线的圆柱体罐子的侧面(不计剪裁和拼接损耗).
(1)若要求圆柱体罐子的侧面积最大,应如何截取?
(2)若要求圆柱体罐子的体积最大,应如何截取?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow{a}$=(1-x,x),$\overrightarrow{b}$=(1,-y)(x>0,y>0)且$\overrightarrow{a}$∥$\overrightarrow{b}$,则x+y的最小值是(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.2D.4

查看答案和解析>>

同步练习册答案