精英家教网 > 高中数学 > 题目详情
16.设函数f(x)在R上存在导函数f′(x),对于任意的实数x,有f(x)=3x2-f(-x),当x∈(-∞,0)时,f′(x)+$\frac{1}{2}$<3x,若f(m+3)-f(-m)≤9m+$\frac{27}{2}$,则实数m的取值范围是(  )
A.[-$\frac{1}{2}$,+∞)B.[-$\frac{3}{2}$,+∞)C.[-1,+∞)D.[-2,+∞)

分析 利用构造法设g(x)=f(x)-$\frac{3}{2}$x2,推出g(x)为奇函数,判断g(x)的单调性,然后推出不等式得到结果.

解答 解:∵f(x)=3x2-f(-x),
∴f(x)-$\frac{3}{2}$x2+f(-x)-$\frac{3}{2}$x2=0,
设g(x)=f(x)-$\frac{3}{2}$x2,则g(x)+g(-x)=0,
∴函数g(x)为奇函数.
∵x∈(-∞,0)时,f′(x)+$\frac{1}{2}$<3x,
g′(x)=f′(x)-3x<-$\frac{1}{2}$,
故函数g(x)在(-∞,0)上是减函数,
故函数g(x)在(0,+∞)上也是减函数,
若f(m+3)-f(-m)≤9m+$\frac{27}{2}$,
则f(m+3)-$\frac{3}{2}$(m+3)2≤f(-m)-$\frac{3}{2}$m2
即g(m+3)<g(-m),
∴m+3≥-m,解得:m≥-$\frac{3}{2}$,
故选:B.

点评 本题考查函数奇偶性、单调性、导数的综合应用,考查分析问题解决问题的能力,难度比较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.在直角坐标系中,边长为1的正方形ABCD的两个顶点A,B分别在x轴和y轴的正半轴移动,求顶点C的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数f(x)=$\sqrt{x-a}$(a∈R),若曲线y=sinx上存在(x0,y0),使得f(f(y0))=y0则a的取值范围为(  )
A.[$\frac{1}{4}$,1]B.[0,$\frac{1}{4}$]C.[$\frac{1}{4}$,1)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率为$\frac{{\sqrt{3}}}{2}$,则双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的渐近线方程为$y±\frac{1}{2}x$,离心率为$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=$\frac{2-a}{2}$x2+ax-2lnx(a∈R)
(I)当a=0时,求函数f(x)的极值;
(Ⅱ)当a>4时,求函数f(x)的单调区间;
(Ⅲ)若对任意a∈(4,6)及任意x1,x2∈[1,2],ma+2ln2>|f(x1)-f(x2)|恒成立,求实数m 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=sin2x+2sinxcosx-cos2x.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)当x∈[0,$\frac{π}{2}$]时,求函数f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.P(x1,y1)、Q(x2,y2)分别为抛物线y2=4x上不同的两点,F为焦点,若|QF|=2|PF|,则(  )
A.x2=2x1+1B.x2=2x1C.y2=2y1+1D.y2=2y1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知奇函数f(x)满足对任意x∈R都有f(x+6)=f(x)+3成立,且f(1)=1,则f(2015)+f(2016)=2015.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知定义在R上的函数f(x)是奇函数,且f(x)在(-∞,0)上是减函数,f(2)=0,g(x)=f(x+2),则不等式xg(x)≤0的解集是(  )
A.(-∞,-2]∪[2,+∞)B.[-4,-2]∪[0,+∞)C.(-∞,-4]∪[-2,+∞)D.(-∞,-4]∪[0,+∞)

查看答案和解析>>

同步练习册答案