精英家教网 > 高中数学 > 题目详情
15.设f(x)在定义域上可导,则$\underset{lim}{△x→0}$$\frac{[f(x)]^{2}-[f(x-△x)]^{2}}{△x}$=(  )
A.f(x)f′(x)B.-f(x)f′(x)C.2f(x)f′(x)D.-2f(x)f′(x)

分析 化简$\frac{[f(x)]^{2}-[f(x-△x)]^{2}}{△x}$=$\frac{(f(x)+f(x-△x))(f(x)-f(x-△x))}{△x}$,从而解得.

解答 解:$\underset{lim}{△x→0}$$\frac{[f(x)]^{2}-[f(x-△x)]^{2}}{△x}$
=$\underset{lim}{△x→0}$$\frac{(f(x)+f(x-△x))(f(x)-f(x-△x))}{△x}$
=$\underset{lim}{△x→0}$(f(x)+f(x-△x))•$\underset{lim}{△x→0}$$\frac{f(x)-f(x-△x)}{△x}$
=2f(x)f′(x),
故选C.

点评 本题考查了极限的定义及转化思想与整体思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.函数f(x)=3x-2ln$\frac{|x|}{2}$的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2-ax+2lnx.
(Ⅰ)若a=2,求曲线y=f(x)在点P(1,f(1))处的切线;
(Ⅱ)若函数y=f(x)在定义域上单调递增,求实数a的取值范围;
(Ⅲ)设f(x)有两个极值点x1,x2,若${x_1}∈(0,\frac{1}{e}]$,且f(x1)≥t+f(x2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知O为三角形ABC内一点,且满足$\overrightarrow{OA}$+λ$\overrightarrow{OB}$+(λ-1)$\overrightarrow{OC}$=$\overrightarrow{0}$.若△OAB的面积与△OAC的面积比值为$\frac{1}{3}$,则λ的值为(  )
A.$\frac{3}{2}$B.2C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若$\underset{lim}{n→∞}$an=p,则  (  )
A.an<pB.an>p
C.an=pD.an与p的大小关系不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图所示的正数数阵中,第一横行是公差为d的等差数列,奇数列均是公比为q1等比数列,偶数列均是公比为q2等比数列,已知a1,1=1,a1,4=7,a4,1=$\frac{1}{8}$,a2,4=2(a1,1+a2,2)则下列结论中不正确的是(  )
A.d+q1+q2=a2,5
B.a2,1+a2,3+a2,5+…+a2,21=$\frac{441}{2}$
C.a1,2+a3,2+a5,2+…+a21,2=411-1
D.ai,j=$\left\{\begin{array}{l}(2j-1){2^{1-i}},j为正奇数\\(2j-1){2^{i-1}},j为正偶数\end{array}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知△ABC是锐角三角形,向量$\overrightarrow{m}$=(cos(A+$\frac{π}{3}$),sin(A+$\frac{π}{3}$)),$\overrightarrow{n}$=(cosB,sinB),且$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(Ⅰ)求A-B的值;
(Ⅱ)若cosB=$\frac{3}{5}$,AC=8,求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.为了研究某校的高三市三模的文科数学成绩,现随机抽取了60名学生的数学成绩进行分析,现将成绩按如下方式分为6组,第一组[80,90),第二组[90,100),…,第六组[130,140),得到如图所示的频率分布直方图.
(1)求频率分布直方图中a的值;
(2)估计该校高三年级文科数学成绩的众数和平均成绩(同一组中的数据用该组区间的中点值作代表);
(3)从成绩在[110,130)的同学中用分层抽样的方法抽取5位同学,并从这5位同学中任选2人跟数学老师参与信息反馈,求选中2位数学成绩不在同一组的同学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的右焦点为F,上顶点为B,圆O以椭圆C的中心为圆心,半径等于线段BF的长.
(1)求圆O的标准方程;
(2)过F的直线L与圆O交于A,B两点,问圆O上是否存在点P满足条件$\overrightarrow{OP}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$;若存在,请求出直线L的方程,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案