精英家教网 > 高中数学 > 题目详情
20.如图,正方体ABCD-A1B1C1D1,则下列四个命题:
①点P在直线BC1上运动,三棱锥A-D1PC的体积不变
②点P在直线BC1上运动,直线AP与平面ACD1所成角的大小不变
③点P在直线BC1上运动,二面角P-AD1-C的大小不变
④点P是平面ABCD上到点D和C1距离相等的动点,则P的轨迹是过点B的直线.
其中的真命题是(  )
A.①③B.①③④C.①②④D.③④

分析 ①由正方体的性质可得:BC1∥AD1,于是BC1∥平面AD1C,可得直线BC1上的点到平面AD1C的距离不变,而△AD1C的面积不变,即可判断出结论.
②由①可知:直线BC1上的点到平面AD1C的距离不变,而AP的大小在改变,可得直线AP与平面ACD1所成角的大小改变,即可判断出正误.
③由①可知:点P到平面AD1C的距离不变,点P到AD1的距离不变,即可判断出二面角P-AD1-C的大小是否改变.
④如图所示,不妨设正方体的棱长为a,设P(x,y,0),利用|PD|=|PC1|,利用两点之间的距离公式化简即可得出.

解答 解:①由正方体的性质可得:BC1∥AD1,于是BC1∥平面AD1C,因此直线BC1上的点到平面AD1C的距离不变,点P在直线BC1上运动,又△AD1C的面积不变,因此三棱锥A-D1PC的体积=$\frac{1}{3}{d}_{P}•{S}_{△A{D}_{1}C}$不变.
②点P在直线BC1上运动,由①可知:直线BC1上的点到平面AD1C的距离不变,而AP的大小在改变,因此直线AP与平面ACD1所成角的大小改变,故不正确.
③点P在直线BC1上运动,由①可知:点P到平面AD1C的距离不变,点P到AD1的距离不变,可得二面角P-AD1-C的大小不变,
正确;
④如图所示,不妨设正方体的棱长为a,D(0,0,0),C1(0,a,a),设P(x,y,0),∵|PD|=|PC1|,则$\sqrt{{x}^{2}+{y}^{2}}$=$\sqrt{{x}^{2}+(y-a)^{2}+{a}^{2}}$,化为y=a,因此P的轨迹是过点B的直线,正确.
其中的真命题是①③④.
故选:B.

点评 本题考查了空间位置关系、三棱锥的体积、空间角,考查了空间想象能力、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x3+ax2+3x-9.
(1)若a=-1时,求函数f(x)在点(2,f(2))处的切线方程;
(2)若函数f(x)在x=-3时取得极值,当x∈[-4,-1]时,求使得f(x)≥m恒成立的实数m的取值范围;
(3)若函数f(x)在区间[1,2]上单调递减,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设A={x|x2+ax+b=0},B={x|x2+cx+15=0}.若A∩B={3},A∪B={1,3,5},试求实数a,b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ln(x+1)-$\frac{x}{x+1}$.
(1)求f(x)的单调区间;
(2)求曲线y=f(x)的极值;
(3)求证:对任意的正数a与b,恒有lna-lnb≥1-$\frac{b}{a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=x3-12x的极小值点是(  )
A.2B.-2C.-16D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1上一点P与定点(1,0)之间距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=(2-a)lnx+$\frac{1}{x}$+2ax(a∈R).
(Ⅰ)当a=0时,求f(x)的极值;
(Ⅱ)对?a∈(-3,-2),若存在x1,x2∈[1,2],使不等式|f(x1)-f(x2)|>(m-2+ln2)a-2ln2恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.椭圆$\frac{x^2}{16}$+$\frac{y^2}{25}$=1的离心率为(  )
A.$\frac{4}{5}$B.$\frac{5}{4}$C.$\frac{3}{5}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知命题p:函数y=ln(x2+3)+$\frac{1}{{ln({x^2}+3)}}$的最小值是2;命题q:x>2是x>l的充分不必要条件.则下列命题为真命题的是(  )
A.p∧qB.?p∧?qC.?p∧qD.p∧?q

查看答案和解析>>

同步练习册答案