精英家教网 > 高中数学 > 题目详情
10.已知命题p:函数y=ln(x2+3)+$\frac{1}{{ln({x^2}+3)}}$的最小值是2;命题q:x>2是x>l的充分不必要条件.则下列命题为真命题的是(  )
A.p∧qB.?p∧?qC.?p∧qD.p∧?q

分析 分别判断p,q的真假,从而判断出复合命题的真假.

解答 解:y=ln(x2+3)+$\frac{1}{{ln({x^2}+3)}}$>2$\sqrt{ln{(x}^{2}+3)•\frac{1}{ln{(x}^{2}+3)}}$=2,
令ln(x2+3)=$\frac{1}{ln{(x}^{2}+3)}$,得:ln(x2+3)=1,
显然ln(x2+3)>lne=1,故“=”不成立,取不到2,
故命题p是假命题;
x>2是x>l的充分不必要条件,
故命题q是真命题,
故?p∧q是真命题,
故选:C.

点评 本题考查了对数函数的性质,考查充分必要条件,考查复合命题的判断,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.如图,正方体ABCD-A1B1C1D1,则下列四个命题:
①点P在直线BC1上运动,三棱锥A-D1PC的体积不变
②点P在直线BC1上运动,直线AP与平面ACD1所成角的大小不变
③点P在直线BC1上运动,二面角P-AD1-C的大小不变
④点P是平面ABCD上到点D和C1距离相等的动点,则P的轨迹是过点B的直线.
其中的真命题是(  )
A.①③B.①③④C.①②④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=cos(x-$\frac{π}{3}$)+2sin2$\frac{x}{2}$,x∈R.
(1)求函数f(x)的值域;
(2)记△ABC的内角A、B、C的对边分别为a、b、c,若f(B)=1,b=1,c=$\sqrt{3}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.经过点A(3,0)、垂直于极轴的直线的极坐标方程是ρcosθ=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知正项等比数列{an}的前n项和为Sn,且$\frac{S_4}{S_2}$=10,a3=9.
(1)求数列{an}的通项公式与前n项和为Sn
(2)若数列{bn}的通项公式为$\frac{b_n}{{2{a_n}}}$=n-3,
(ⅰ)求数列{bn}的前n项和为Tn
(ⅱ)探究:数列{bn}是否有最小项?若没有,请通过计算得到最小项的项数;若没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.数列{an}满足a1=1,an-an-1=$\frac{1}{{2}^{n-1}}$(n∈N*),则an=2-$(\frac{1}{2})^{n-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若x≠y,且x,a1,a2,a3,y与x,b1,b2,b3,b4,y各成等差数列,则$\frac{{a}_{2}-{a}_{1}}{{b}_{2}-{b}_{1}}$的值为(  )
A.1B.$\frac{4}{5}$C.$\frac{5}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=x2-ax+4.
(1)若f(x)≥0在[$\frac{1}{2}$,4]上恒成立,求a的取值范围;
(2)若方程f(x)=3在[$\frac{1}{2}$,4]上有两个解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在($\frac{{\sqrt{x}}}{2}$-$\frac{2}{{\sqrt{x}}}$)4的二项展开式中,x的系数为(  )
A.-$\frac{15}{4}$B.-$\frac{3}{8}$C.$\frac{15}{4}$D.-1

查看答案和解析>>

同步练习册答案