精英家教网 > 高中数学 > 题目详情
某人午觉醒来,发现表停了,他打开收音机,想听电台报时,他等待的时间不多于10分钟的概率为(  )
A、
1
2
B、
1
4
C、
1
6
D、
1
8
考点:几何概型
专题:概率与统计
分析:由电台整点报时的时刻是任意的知这是一个几何概型,电台整点报时知事件总数包含的时间长度是60,而他等待的时间不多于10分钟的事件包含的时间长度是10,两值一比即可求出所求.
解答: 解:设A={等待的时间不多于10分钟},
事件A恰好是打开收音机的时刻位于[50,60]时间段内,
因此由几何概型的求概率的公式可得p(A)=
60-50
60
=
1
6

即“等待报时的时间不超过10分钟”的概率为
1
6

故选C
点评:本题考查了几何概型,首先要判断该概率模型,对于几何概型,它的结果要通过长度、面积或体积之比来得到,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1的六个面中,与平面ABCD垂直的面的个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过点P(0,-1)作抛物线x2=4y的切线,切点分别为A,B,则
PA
PB
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-ax2+(a2-1)x+b,其图象在点(1,f(x))处的切线方程为x+y-3=0.
(1)求a,b的值与函数f(x)的单调区间;
(2)若对x∈[-2,4],不等式f(x)<c2-c恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,PA⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,PA=AB=2,点E为线段PB的中点,点M在弧AB上,且OM∥AC.
(1)求证:平面MOE∥平面PAC;
(2)求证:平面PAC⊥平面PCB;
(3)求三棱锥O-PBC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
x+1
,点A0表示坐标原点,点An(n,f(n))(n∈N*).若向量an=
A0A1
+
A1A2
+…+
AN-1An
,θn是an与i的夹角(其中i=(1,0)),则tanθn=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知从一点P引出三条射线PA、PB、PC,且两两成角60°,则二面角B-PA-C的余弦值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
2
,AF=1,M是线段EF的中点.
(Ⅰ)求三棱锥A-BDF的体积;
(Ⅱ)求证:AM∥平面BDE;
(Ⅲ)求异面直线AM与DF所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

下面有三个命题:
①关于x的方程mx2+mx+1=0(m∈R)的解集恰有一个元素的充要条件是m=0或m=4;
②?m∈R,使函数f(x)=mx2+x是奇函数;
③命题“x,y是实数,若x+y≠2,则x≠1或y≠1”是真命题.
其中,真命题的序号是
 

查看答案和解析>>

同步练习册答案