精英家教网 > 高中数学 > 题目详情
16.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右两个焦点F1,F2,过其中两个端点的直线斜率为$\frac{\sqrt{2}}{2}$,过两个焦点和一个顶点的三角形面积为1.
(1)求椭圆的方程;
(2)如图,点A为椭圆上一动点(非长轴端点),AF1的延长线与椭圆交于B点,AO的延长线与椭圆交于C点,求△ABC面积的最大值,并求此时直线AB的方程.

分析 (1)根据题意,得出$\frac{b}{a}$=$\frac{\sqrt{2}}{2}$①,cb=1②,a2=b2+c2③,由①②③解得c、b、a的值即可;
(2)讨论直线AB的斜率不存在与斜率存在时,求出对应△ABC的面积,由此判断△ABC面积的最大值以及此时AB的直线方程.

解答 解:(1)椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)中,
过其中两个端点的直线斜率为$\frac{\sqrt{2}}{2}$,∴$\frac{b}{a}$=$\frac{\sqrt{2}}{2}$①;
过两个焦点和一个顶点的三角形面积为1,∴c•b=1②;
又a2=b2+c2③,
由①②③解得c=b=1,a=$\sqrt{2}$;
∴椭圆的方程为$\frac{{x}^{2}}{2}$+y2=1;
(2)当直线AB的斜率不存在时,
可知A(-1,$\frac{\sqrt{2}}{2}$),B(-1,-$\frac{\sqrt{2}}{2}$),C(1,-$\frac{\sqrt{2}}{2}$),
故S△ABC=$\sqrt{2}$,
当直线AB的斜率存在时,设直线AB的方程为y=k(x+1),
联立方程$\left\{\begin{array}{l}{y=k(x+1)}\\{\frac{{x}^{2}}{2}{+y}^{2}=1}\end{array}\right.$化简得,
(2k2+1)x2+4k2x+2k2-2=0,
∴xA+xB=-$\frac{{4k}^{2}}{{2k}^{2}+1}$,xAxB=$\frac{{2k}^{2}-2}{{2k}^{2}+1}$,
故|xA-xB|=$\sqrt{{{(x}_{A}{+x}_{B})}^{2}-{{4x}_{A}x}_{B}}$
=2$\sqrt{2}$•$\frac{\sqrt{{k}^{2}+1}}{{2k}^{2}+1}$,
故|AB|=$\sqrt{1{+k}^{2}}$|xA-xB|
=2$\sqrt{2}$•$\frac{{k}^{2}+1}{{2k}^{2}+1}$,
点C到直线AB的距离d=$\frac{|k({-x}_{A}+1){+y}_{A}|}{\sqrt{{k}^{2}+1}}$=$\frac{2|k|}{\sqrt{{k}^{2}+1}}$,
故S△ABC=$\frac{1}{2}$•(2$\sqrt{2}$•$\frac{{k}^{2}+1}{{2k}^{2}+1}$)•$\frac{2|k|}{\sqrt{{k}^{2}+1}}$
=2$\sqrt{2}$•$\sqrt{\frac{{k}^{2}{(k}^{2}+1)}{{({2k}^{2}+1)}^{2}}}$
=2$\sqrt{2}$•$\sqrt{\frac{1}{4}-\frac{1}{{4({2k}^{2}+1)}^{2}}}$<$\sqrt{2}$;
综上,△ABC面积的最大值为$\sqrt{2}$,此时AB的方程为x+1=0.

点评 本题考查了椭圆与双曲线的性质应用,同时考查了数形结合的思想应用及分类讨论的思想应用,关键在于化简运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点P(1,$\frac{3}{2}$),其离心率为$\frac{1}{2}$.
(1)求椭圆C的方程;
(2)设椭圆C的右顶点为A,直线l交C于两点M、N(异于点A),且AM⊥AN,证明直线l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知${\overrightarrow e_1}$和${\overrightarrow e_2}$是表示平面内所有向量的一组基底,那么下面四组向量中不能作为一组基底的是(  )
A.${\overrightarrow e_1}$和 ${\overrightarrow e_1}$+${\overrightarrow e_2}$B.${\overrightarrow e_1}$-2${\overrightarrow e_2}$和${\overrightarrow e_1}$-${\overrightarrow e_2}$
C.${\overrightarrow e_1}$+${\overrightarrow e_2}$和${\overrightarrow e_1}$-${\overrightarrow e_2}$D.2${\overrightarrow e_1}$-${\overrightarrow e_2}$和$\frac{1}{2}$${\overrightarrow e_2}$-${\overrightarrow e_1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若十进制数26等于k进制数32,则k等于(  )
A.4B.5C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知双曲线C过点A(-$\sqrt{15}$,1),且与x2-3y2=1有相同的渐近线.
(1)求双曲线C的标准方程;
(2)过双曲线C的一个焦点作倾斜角为45°的直线l与双曲线交于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.把十进制的数101转化为四进制数,得(  )
A.1121(4)B.1211(4)C.1021(4)D.1201(4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=sinωx•cosωx+$\sqrt{3}$cos2ωx-$\frac{\sqrt{3}}{2}$(ω>0),直线x=x1,x=x2是y=f(x)图象的任意两条对称轴,且|x1-x2|的最小值为$\frac{π}{4}$,若关于x的方程f(x)+k=0在区间[0,$\frac{π}{4}$]上有两个不同的实数解,则实数k的取值范围为(  )
A.(-1,1)B.($\frac{\sqrt{3}}{2}$,1)C.(-1,-$\frac{\sqrt{3}}{2}$]D.(-1,$\frac{\sqrt{3}}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.实数m为何值时,复数Z=(m2+5m+6)+(m2-2m-15)i对应的点在:
(1)实轴上;
(2)在第一象限;
(3)直线x+y+4=0上.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知点A(2,1),P是焦点为F的抛物线y2=4x上的任一点,当△PAF的周长最小时,△PAF的面积为(  )
A.2B.$\frac{1}{2}$C.$\frac{7}{8}$D.$\frac{7}{4}$

查看答案和解析>>

同步练习册答案