精英家教网 > 高中数学 > 题目详情
1.把十进制的数101转化为四进制数,得(  )
A.1121(4)B.1211(4)C.1021(4)D.1201(4)

分析 根据所给的十进制的数字,用这个数值除以4,得到商和余数,继续除以4,直到商是0,这样把余数倒序写起来就得到所求的结果.

解答 解:∵101÷4=25…1,
25÷4=6…1,
6÷4=1…2,
1÷4=0…1,
∴将十进制数101化为四进制数是:1211(4)
故选:B.

点评 本题考查算法的多样性,本题解题的关键是理解不同进位制之间的转化原理,不管是什么进位制之间的转化做法都相同,本题是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.函数y=3sin(2x+$\frac{π}{4}$)的图象向左平移φ(0<φ<$\frac{π}{2}$)个单位后,所得到函数图象关于原点对称,则φ=$\frac{3π}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若双曲线x2+2my2=1的两条渐近线互相垂直,则其一个焦点为(  )
A.(0,1)B.(-1,0)C.(0,$\sqrt{2}$)D.(-$\sqrt{2}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设函数f(x)是定义在R上的奇函数,且当x≤0时,f(x)=x2+(3a-1)x,若方程f(x)=|ex-1|(e为自然对数的底)有且仅有两个不相等的实数解,则实数a的取值范围为a≤$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右两个焦点F1,F2,过其中两个端点的直线斜率为$\frac{\sqrt{2}}{2}$,过两个焦点和一个顶点的三角形面积为1.
(1)求椭圆的方程;
(2)如图,点A为椭圆上一动点(非长轴端点),AF1的延长线与椭圆交于B点,AO的延长线与椭圆交于C点,求△ABC面积的最大值,并求此时直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知P1、P2是平面内的两点,当k∈N*时,P2k+1是P2k关于点P1的对称点,P2k+2是P2k+1关于点P2的对称点,若P1P2=1,则P2016P2017=4030.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=Asin(ωx+φ)(A>0,ω>0),|φ|<$\frac{π}{2}$)的图象如图所示,则f(0)等于(  )
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.用反证法证明命题“三角形的内角中至少有一个不大于60°”时,“假设命题结论不成立”的正确叙述是(4)(填序号)
(1)假设三个内角都不大于60°
(2)假设三个内角至多有两个大于60°
(3)假设三个内角至多有一个大于60°
(4)假设三个内角都大于60°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.求圆C1:(x-3)2+y2=4与圆C2:x2+(y+4)2=2的圆心距5.

查看答案和解析>>

同步练习册答案