精英家教网 > 高中数学 > 题目详情
6.已知P1、P2是平面内的两点,当k∈N*时,P2k+1是P2k关于点P1的对称点,P2k+2是P2k+1关于点P2的对称点,若P1P2=1,则P2016P2017=4030.

分析 化简可得P1P2=1,P2P3=2,P3P4=4,P4P5=6,P5P6=8,P6P7=10,从而可得当n≥2时,PnPn+1=2+2(n-2)=2n-2,从而求得.

解答 解:由题意知,
P1P2=1,P2P3=2,
P3P4=4,P4P5=6,
P5P6=8,P6P7=10,
故当n≥2时,PnPn+1=2+2(n-2)=2n-2,
故P2016P2017=2×2016-2=4030;
故答案为:4030.

点评 本题考查了转化思想与归纳法的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,且过点M(-2,0).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设直线l:x=ky+1与椭圆C相交于A(x1,y1),B(x2,y2)两点,连接MA,MB交直线x=4于P,Q两点,yP,yQ分别为P、Q的纵坐标,求证:$\frac{1}{{y}_{1}}$+$\frac{1}{{y}_{2}}$=$\frac{1}{{y}_{P}}$+$\frac{1}{{y}_{Q}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知点A(-3,1,-4),则点A关于原点对称的点的坐标为(  )
A.(-3,-1,4)B.(-3,-1,-4)C.(3,1,4)D.(3,-1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=Asin(2ωx+φ)(其中A>0,ω>0,-π<φ<π)在x=$\frac{π}{3}$处取得极大值2,其图象与x轴相邻两个交点的距离为$\frac{π}{2}$.
(1)求f(x)的解析式;
(2)求f(x)-$\sqrt{3}$≥0的解集;
(3)将函数y=f(x)的图象上各点的纵坐标保持不变,横坐标缩短到原来得$\frac{1}{2}$,再把所得到的图象向左平移$\frac{π}{6}$个单位长度,得到函数y=g(x)的图象,求函数y=g(x)在区间[-$\frac{π}{6}$,$\frac{π}{12}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.把十进制的数101转化为四进制数,得(  )
A.1121(4)B.1211(4)C.1021(4)D.1201(4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|2x-a|+a,若不等式f(x)<6的解集为(-1,3),求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若a,b,c为Rt△ABC的三边,其中c为斜边,那么当n>2,n∈N*时,an+bn与cn的大小关系为an+bn<cn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.一名顾客计划到商场购物,他有三张优惠劵,每张优惠券只能购买一件商品.根据购买商品的标价,三张优惠券的优惠方式不同,具体如下:
优惠劵1:若标价超过50元,则付款时减免标价的10%;
优惠劵2:若标价超过100元,则付款时减免20元;
优惠劵3:若标价超过100元,则超过100元的部分减免18%.
若顾客购买某商品后,使用优惠劵1比优惠劵2、优惠劵3减免的都多,则他购买的商品的标价可能为(  )
A.179元B.199元C.219元D.239元

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.函数f(x)=2cos(ωx+θ)(x∈R,ω>0,0≤θ≤$\frac{π}{2}$)的图象与x轴相交于点($\frac{π}{6}$,0),且函数相邻两条对称轴的距离为$\frac{π}{2}$.
(1)求θ和ω的值;
(2)若f($\frac{1}{2}$x+$\frac{π}{6}$)=$\frac{8}{5}$,x∈(-$\frac{π}{2}$,$\frac{π}{2}$),求$\frac{sin2x}{1+cos2x}$值.

查看答案和解析>>

同步练习册答案