精英家教网 > 高中数学 > 题目详情
16.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,且过点M(-2,0).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设直线l:x=ky+1与椭圆C相交于A(x1,y1),B(x2,y2)两点,连接MA,MB交直线x=4于P,Q两点,yP,yQ分别为P、Q的纵坐标,求证:$\frac{1}{{y}_{1}}$+$\frac{1}{{y}_{2}}$=$\frac{1}{{y}_{P}}$+$\frac{1}{{y}_{Q}}$.

分析 (Ⅰ)由椭圆的离心率为$\frac{\sqrt{2}}{2}$,且过点M(-2,0),列出方程组,能求出椭圆C的标准方程.
(Ⅱ)由题意得MA的方程为y=$\frac{{y}_{1}}{{x}_{1}+2}$(x+2),从而yP=$\frac{6{y}_{1}}{{x}_{1}+2}$,同理,${y}_{Q}=\frac{6{y}_{2}}{{x}_{2}+2}$,由$\left\{\begin{array}{l}{x=ky+1}\\{{x}^{2}+2{y}^{2}=4}\end{array}\right.$,得(k2+2)y2+2ky-3=0,由此利用根的判别式、韦达定理、椭圆性质,结合已知条件能证明$\frac{1}{{y}_{1}}$+$\frac{1}{{y}_{2}}$=$\frac{1}{{y}_{P}}$+$\frac{1}{{y}_{Q}}$.

解答 解:(Ⅰ)∵椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,且过点M(-2,0),
∴$\left\{\begin{array}{l}{a=2}\\{e=\frac{c}{a}=\frac{\sqrt{2}}{2}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解得a=2,c=$\sqrt{2}$,b=$\sqrt{2}$,
∴椭圆C的标准方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}$=1.
证明:(Ⅱ)由题意得MA的方程为y=$\frac{{y}_{1}}{{x}_{1}+2}$(x+2),
∴yP=$\frac{6{y}_{1}}{{x}_{1}+2}$,同理,${y}_{Q}=\frac{6{y}_{2}}{{x}_{2}+2}$,
由$\left\{\begin{array}{l}{x=ky+1}\\{{x}^{2}+2{y}^{2}=4}\end{array}\right.$,得(k2+2)y2+2ky-3=0,
△=4k2+12(k2+2)>0,
${y}_{1}+{y}_{2}=\frac{-2k}{{k}^{2}+2}$,y1y2=$\frac{-3}{{k}^{2}+2}$,
∴$\frac{1}{{y}_{1}}$+$\frac{1}{{y}_{2}}$=$\frac{{y}_{1}+{y}_{2}}{{y}_{1}{y}_{2}}$=$\frac{\frac{-3k}{{k}^{2}+2}}{\frac{-3}{{k}^{2}+2}}$=$\frac{2k}{3}$,
$\frac{1}{{y}_{P}}$+$\frac{1}{{y}_{Q}}$=$\frac{{x}_{1}+2}{6{y}_{1}}+\frac{{x}_{2}+2}{6{y}_{2}}$
=$\frac{{y}_{2}({x}_{1}+2)+{y}_{1}({x}_{2}+2)}{6{y}_{1}{y}_{2}}$
=$\frac{2k{y}_{1}{y}_{2}+3({y}_{1}+{y}_{2})}{6{y}_{1}{y}_{2}}$
=$\frac{k}{3}+\frac{{y}_{1}+{y}_{2}}{2{y}_{1}{y}_{2}}$
=$\frac{2k}{3}$.
∴$\frac{1}{{y}_{1}}$+$\frac{1}{{y}_{2}}$=$\frac{1}{{y}_{P}}$+$\frac{1}{{y}_{Q}}$.

点评 本题考查椭圆标准方程的求法,考查等式的证明,是中档题,解题时要认真审题,注意椭圆性质、根的判别式、韦达定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.襄阳市某优质高中为了选拔学生参加“全国中学生英语能力竞赛(NEPCS)”,先在本校进行初赛(满分150分),若该校有100名学生参加初赛,并根据初赛成绩得到如图所示的频率分布直方图.
(1)根据频率分布直方图,计算这100名学生参加初赛成绩的中位数;
(2)该校推荐初赛成绩在110分以上的学生代表学校参加竞赛,为了了解情况,在该校推荐参加竞赛的学生中随机抽取2人,求选取的两人的初赛成绩在频率分布直方图中处于不同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.专家由圆x2+y2=a2的面积S=πa2通过类比推理猜想椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的面积S=πab,之后利用演绎推理证明了这个公式是对的!在平面直角坐标系中,点集A={(x,y)|$\frac{{x}^{2}}{4}$+y2≤1},点集B={(x,y)|-3<x<3,-1<y<5},则点集M={(x,y)|x=x1+x2,y=y1+y2,(x1,y1)∈A,(x2,y2)∈B}所表示的区域的面积为36+2π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求证:当一个圆和一个正方形的周长相等时,圆的面积比正方形的面积大.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=3sin(2x+$\frac{π}{4}$)的图象向左平移φ(0<φ<$\frac{π}{2}$)个单位后,所得到函数图象关于原点对称,则φ=$\frac{3π}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.我国发射的天宫一号飞行器需要建造隔热层.已知天宫一号建造的隔热层必须使用20年,每厘米厚的隔热层建造成本是6万元,天宫一号每年的能源消耗费用C(万元)与隔热层厚度x(厘米)满足关系式:C(x)=$\frac{k}{3x+8}$(0≤x≤10),若无隔热层(即x=0),则每年能源消耗费用为5万元.设f(x)为隔热层建造费用与使用20年的能源消耗费用之和.
(1)求C(x)和f(x)的表达式;
(2)当隔热层修建多少厘米厚时,总费用f(x)最小,并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b≥1})$的离心率$\frac{{\sqrt{2}}}{2}$,其右焦点到直线2ax+by-$\sqrt{2}$=0的距离为$\frac{{\sqrt{2}}}{3}$.
(I)求椭圆C1的方程;
(Ⅱ)过点P$({0,-\frac{1}{3}})$的直线l交椭圆C1于A、B两点.
(i)证明:线段AB的中点G恒在椭圆C2:$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{{b}^{2}}$=1的内部;
(ii)判断以AB为直径的圆是否恒过定点?若是,求出该定点坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在等差数列{an}中,a1=-2016,其前n项和为Sn,若$\frac{{{S_{20}}}}{20}-\frac{{{S_{18}}}}{18}$=2,则S2016的值等于-2016.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知P1、P2是平面内的两点,当k∈N*时,P2k+1是P2k关于点P1的对称点,P2k+2是P2k+1关于点P2的对称点,若P1P2=1,则P2016P2017=4030.

查看答案和解析>>

同步练习册答案