精英家教网 > 高中数学 > 题目详情
13.函数f(x)=Asin(ωx+φ)(A>0,ω>0),|φ|<$\frac{π}{2}$)的图象如图所示,则f(0)等于(  )
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

分析 根据函数f(x)的图象,求出A、ω与φ的值,写出f(x)的解析式,再求f(0)的值.

解答 解:根据函数f(x)的图象知,函数的最小值为-1,∴A=1;
又$\frac{T}{4}$=$\frac{7π}{12}$-$\frac{π}{3}$=$\frac{π}{4}$,
∴T=π;
根据周期公式可得,$\frac{2π}{ω}$=π,∴ω=2,
∴f(x)=sin(2x+φ);
又函数图象过($\frac{7π}{12}$,-1)
代入可得,sin(2×$\frac{7π}{12}$+φ)=-1,
∴2×$\frac{7π}{12}$+φ=$\frac{3π}{2}$+2kπ,k∈Z,
∴φ=$\frac{π}{3}$+2kπ,k∈Z;
又|φ|<$\frac{π}{2}$,∴φ=$\frac{π}{3}$;
∴f(x)=sin(2x+$\frac{π}{3}$),
∴f(0)=sin$\frac{π}{3}$=$\frac{\sqrt{3}}{2}$.
故选:D.

点评 本题主要考查了由函数的部分图象求函数的解析式,通常是由函数的最值求A,根据周期公式求ω,根据函数的最值点求φ,是基础试题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.用分析法证明:当x≥4时,$\sqrt{x-3}$+$\sqrt{x-2}$>$\sqrt{x-4}$+$\sqrt{x-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若十进制数26等于k进制数32,则k等于(  )
A.4B.5C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.把十进制的数101转化为四进制数,得(  )
A.1121(4)B.1211(4)C.1021(4)D.1201(4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=sinωx•cosωx+$\sqrt{3}$cos2ωx-$\frac{\sqrt{3}}{2}$(ω>0),直线x=x1,x=x2是y=f(x)图象的任意两条对称轴,且|x1-x2|的最小值为$\frac{π}{4}$,若关于x的方程f(x)+k=0在区间[0,$\frac{π}{4}$]上有两个不同的实数解,则实数k的取值范围为(  )
A.(-1,1)B.($\frac{\sqrt{3}}{2}$,1)C.(-1,-$\frac{\sqrt{3}}{2}$]D.(-1,$\frac{\sqrt{3}}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若a,b,c为Rt△ABC的三边,其中c为斜边,那么当n>2,n∈N*时,an+bn与cn的大小关系为an+bn<cn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.实数m为何值时,复数Z=(m2+5m+6)+(m2-2m-15)i对应的点在:
(1)实轴上;
(2)在第一象限;
(3)直线x+y+4=0上.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列函数中,最小正周期为π的偶函数是(  )
A.y=cos(2x+$\frac{π}{2}$)B.y=cos$\frac{x}{2}$C.y=sin(2x-$\frac{π}{2}$)D.y=tanx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知cos(α+2β)=$\frac{1}{5}$,cosα=$\frac{2}{5}$,则tan(α+β)tanβ=(  )
A.-2B.$\frac{1}{2}$C.3D.$\frac{1}{3}$

查看答案和解析>>

同步练习册答案