精英家教网 > 高中数学 > 题目详情
二项式(
x
-
1
3x
)n
的展开式中第4项为常数项,则常数项为(  )
A、10B、-10
C、20D、-20
考点:二项式系数的性质
专题:二项式定理
分析:利用二项展开式的通项公式求出展开式的通项,令x的指数为0,求出r,将r的值代入通项求出展开式的常数项.
解答: 解:展开式的第四项是:
C
3
n
(
x
)
1
2
(n-3)
(-
1
3x
)
3
=-
C
3
n
x
1
2
(n-5)
,第4项为常数项,令n-5=0得n=5,
∴展开式的常数项为:-
C
3
5
=-10.
故选:B.
点评:本题考查利用二项展开式的通项公式解决二项展开式的特定项问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax-2,(a∈R)
(l)若f(x)在区间(1,+∞)上是增函数,求实数a的取值范围;
(2)若g(x)=
f′(x)-a,x≤0
1
x
, x>1
,且f(x0)=3,求x0的值.
(3)若g(x)=
af′(x-1),x≤1
1
x
,x>1
,且在R上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某个部件由三个元件如图方式连接而成,元件A或元件B正常工作,且元件C正常工作,则部件正常工作.若3个元件的次品率均为
1
3
,且各个元件相互独立,那么该部件的次品率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知⊙M经过双曲线S:
x2
9
-
y2
16
=1的一个顶点和一个焦点,圆心M在双曲线上S上,则圆心M到双曲线S的中心的距离为(  )
A、
13
4
7
3
B、
15
4
8
3
C、
13
3
D、
16
3

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法正确的是(  )
A、一个命题的逆命题为真,则它的逆否命题一定为真
B、若a+b>3,则a>1或b>2
C、命题“所有的矩形都是正方形”的否命题和命题的否定均为真命题
D、“a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m,n是不重合的直线,α,β是不重合的平面,给出下列命题:
①若m⊥α,m?β,则α⊥β;
②若m?α,n?α,m∥β,n∥β,则α∥β;
③如果m?α,n?α,m,n是异面直线,则n与α相交;
④若α∩β=m,n∥m,且n?β,则n∥α,且n∥β.
其中正确命题的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

在5×5的棋盘中,放入3颗黑子和2颗白子,它们均不在同一行且不在同一列,则不同的排列方法种数为(  )
A、150B、200
C、600D、1200

查看答案和解析>>

科目:高中数学 来源: 题型:

对于一切x∈[-2,
1
2
],不等式ax3-x2+x+1≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知斜三棱柱ABC-A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰为AC的中点D,又知BA1⊥AC1
(1)求证:AC1⊥平面A1BC;
(2)求CB1与平面A1AB所成角的正弦值;
(3)求二面角A-A1B-C的余弦值.

查看答案和解析>>

同步练习册答案