精英家教网 > 高中数学 > 题目详情
对于一切x∈[-2,
1
2
],不等式ax3-x2+x+1≥0恒成立,求实数a的取值范围.
考点:函数恒成立问题
专题:导数的综合应用
分析:分x=0,x>0,x<0三种情况讨论,分离参数a后利用导数求函数的最值,从而求得实数a的取值范围.
解答: 解:当x=0时,对于任意实数a不等式ax3-x2+x+1≥0恒成立;
当0<x
1
2
时,不等式ax3-x2+x+1≥0等价于a≥-
1
x3
-
1
x2
+
1
x

设t=
1
x
 (t≥2),则f(t)=-t3-t2+t,f′(t)=-3t2-2t+1=-(t+1)(3t-1),
当t≥2时,f′(t)<0,∴f(t)=-t3-t2+t为减函数,∴f(t)max=f(2)=-10,
∴a≥-10;
当-2≤x<0时,不等式ax3-x2+x+1≥0等价于a≤-
1
x3
-
1
x2
+
1
x

设t=
1
x
 (t≤-
1
2
),则f(t)=-t3-t2+t,f′(t)=-3t2-2t+1=-(t+1)(3t-1),
当t∈(-∞,-1)时,f′(t)<0,f(t)为减函数,当t∈(-1,-
1
2
)时,f′(t)>0,f(t)为增函数,
∴f(t)min=f(-1)=-1.
∴a≤-1.
综上,对于一切x∈[-2,
1
2
],使不等式ax3-x2+x+1≥0恒成立的实数a的取值范围是[-10,-1].
点评:本题考查恒成立问题,考查分类讨论的数学思想方法和数学转化思想方法,训练了利用导数求函数的最值,属中高档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,且a1=1,an+1=2Sn(n=1,2,3…),给出下列四个命题:
①数列{an}是等比数列;
②数列{Sn}是等比数列;
③?常数c>0,使
n
i=1
1
ai
≤c(n∈N+)恒成立;
④若Sn(3an-2γ)+2≥0(n=1,2,3…)恒成立,则γ∈(+∞,
10
3
).
以上命题中正确的命题是
 
(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

二项式(
x
-
1
3x
)n
的展开式中第4项为常数项,则常数项为(  )
A、10B、-10
C、20D、-20

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题:①有一个实数不能做除数; ②棱柱是多面体; ③所有方程都有实数解;  ④有些三角形是锐角三角形;其中特称命题的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为线段CD中点.
(1)求直线B1E与直线AD1所成的角的余弦值;
(2)若AB=2,求二面角A-B1E-
A
 
1
的大小;
(3)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,已知BC=1,BB1=2,∠BCC1=90°,AB⊥侧面BB1C1C.
(1)求直线C1B与底面ABC所成角的正弦值;
(2)若E为CC1的中点,AB=
2
,求平面AEB1与平面A1EB1的夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(sinx,cosx),
n
=(
3
2
3
2
)
,x∈R,函数f(x)=
m•
n

(Ⅰ)求f(x)的最大值;
(Ⅱ)在△ABC中,设角A,B的对边分别为a,b,若B=2A,且b=2af(A-
π
6
),求角C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

根据如图所示的三视图画出对应的几何体.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点.
(1)若PA=PD,求证:平面PQB⊥平面PAD;
(2)设点M在线段PC上,
PM
MC
=
1
2
,求证:PA∥平面MQB;
(3)在(2)的条件下,若平面PAD⊥平面ABCD,且PA=PD=AD=2,求二面角M-BQ-C的大小.

查看答案和解析>>

同步练习册答案