分析 构造函数g(x)=x2-2alnx-2ax,将方程有唯一解,转化为g(x)=0有唯一解,即可求得a的值.
解答 解:∵a>0,∴由2ax=x2-2alnx得x2-2alnx-2ax,(x>0),
设g(x)=x2-2alnx-2ax,(x>0),
若方程x2-2alnx-2ax=0有唯一解,
即g(x)=0有唯一解,
则g′(x)=2x-$\frac{2a}{x}$-2a=$\frac{2({x}^{2}-ax-a)}{x}$,
令g′(x)=0,可得x2-ax-a=0,
∵a>0,x>0,∴x1=$\frac{a+\sqrt{{a}^{2}+4a}}{2}$(另一根舍去),
当x∈(0,x1)时,g′(x)<0,g(x)在(0,x1)上是单调递减函数;
当x∈(x1,+∞)时,g′(x)>0,g(x)在(x1,+∞)上是单调递增函数,
∴当x=x2时,g′(x1)=0,g(x)min=g(x1),
∵g(x)=0有唯一解,
∴g(x1)=0,
∴$\left\{\begin{array}{l}{g({x}_{1})=0}\\{g′({x}_{1})=0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{{{x}_{1}}^{2}-2aln{x}_{1}-2a{x}_{1}=0}\\{{{x}_{1}}^{2}-a{x}_{1}-a=0}\end{array}\right.$,
∴2alnx1+ax1-a=0
∵a>0,
∴2lnx1+x1-1=0,
设函数h(x)=2lnx+x-1,
∵x>0时,h(x)是增函数,
∴h(x)=0至多有一解,
∵h(1)=0,
∴方程2lnx1+x1-1=0的解为x1=1,
即x1=$\frac{a+\sqrt{{a}^{2}+4a}}{2}$=1,
∴$a=\frac{1}{2}$,
∴当a>0,方程f(x)=2ax有唯一解时a的值为$\frac{1}{2}$.
故答案为:$\frac{1}{2}$
点评 本题主要考查函数与方程的应用,构造函数,求函数的导数,利用函数极值和导数之间的关系,进行求解是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com