精英家教网 > 高中数学 > 题目详情
14.如图所示,直四棱柱ABCD-A1B1C1D1内接于半径为$\sqrt{3}$的半O,四边形ABCD为正方形,则该四棱柱的体积最大时,AB的长为2.

分析 设AB=a,BB1=h,求出a2=6-2h2,故正四棱柱的体积是V=a2h=6h-2h3,利用导数,得到该正四棱柱体积的最大值,即可得出结论.

解答 解:设AB=a,BB1=h,
则OB=$\frac{\sqrt{2}}{2}a$,连接OB1,OB,则OB2+BB12=OB12=3,
∴$\frac{{a}^{2}}{2}$+h2=3,
∴a2=6-2h2
故正四棱柱的体积是V=a2h=6h-2h3
∴V′=6-6h2
当0<h<1时,V′>0,1<h<$\sqrt{3}$时,V′<0,
∴h=1时,该四棱柱的体积最大,此时AB=2.
故答案为:2.

点评 本题考查棱柱、棱锥、棱台的体积,借助导数研究出四棱柱的体积最大,是解题的关键,根据题意建立适当的模型是解决一个实际问题的关键,学习时要注意积累此类题中模型的建立方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设loga$\frac{2}{3}$>1,则实数a的取值范围是(  )
A.0<a<$\frac{2}{3}$B.$\frac{2}{3}$<a<1C.0<a<$\frac{2}{3}$或a>1D.a>$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.椭圆b2x2+a2y2=1(a>b>0)的左焦点为F,右顶点为A,上顶点为B,若∠ABF=90°,则椭圆的离心率为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{5}-1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}-1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设椭圆E的方程为$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足BM=2MA,直线OM的斜率为$\frac{{\sqrt{3}}}{4}$.
(1)求椭圆E的离心率e;
(2)若$b=\sqrt{3}$,直线l平行于AB,且在此椭圆上存在不同两点关于直线l对称,求直线l在y轴上截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在正方体ABCD-A1B1C1D1中,过AC与BD1平行的平面必过(  )
A.DD1的中点B.DD1的三等分点C.D1C1的中点D.A1D1的中点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆x2+$\frac{y^2}{4}$=1的左右两个顶点分别为A,B,曲线C是以A,B两点为顶点,焦距为2$\sqrt{5}$的双曲线,设点P在第一象限且在曲线C上,直线AP与椭圆相交于另一点T
(1)求曲线C的方程
(2)设P,T两点的横坐标分别为x1,x2,求证x1.x2为一定值
(3)设△TAB与△POB(其中O为坐标原点)的面积分别为S1,S2,且$\overrightarrow{PA}$•$\overrightarrow{PB}$≤15,求S12-S22的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,sinA:sinB:sinC=2:3:4,则△ABC中最大边所对角的余弦值为$-\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知一个正四棱柱的侧面展开图的周长为18,则这个正四棱柱的体积的最大值为27.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.定义在R上的函数f(x)的导函数为f′(x),若方程f′(x)=0无解,f[f(x)-2017x]=2017,当g(x)=sinx-cosx-kx在[-$\frac{π}{2},\frac{π}{2}$]上与f(x)在R上的单调性相同时,则实数k的取值范围是(-∞,-1].

查看答案和解析>>

同步练习册答案