精英家教网 > 高中数学 > 题目详情
4.定义在R上的函数f(x)的导函数为f′(x),若方程f′(x)=0无解,f[f(x)-2017x]=2017,当g(x)=sinx-cosx-kx在[-$\frac{π}{2},\frac{π}{2}$]上与f(x)在R上的单调性相同时,则实数k的取值范围是(-∞,-1].

分析 由题意可知:f(x)为R上的单调函数,则f(x)-2017x为定值,由指数函数的性质可知f(x)为R上的增函数,则g(x)在[-$\frac{π}{2}$,$\frac{π}{2}$]单调递增,求导,则g'(x)≥0恒成立,则k≤$\sqrt{2}$sin(x+$\frac{π}{4}$)min,根据函数的正弦函数的性质即可求得k的取值范围.

解答 解:若方程f'(x)=0无解,
则 f′(x)>0或f′(x)<0恒成立,所以f(x)为R上的单调函数,
?x∈R都有f[f(x)-2017x]=2017,
则f(x)-2017x为定值,
设t=f(x)-2017x,则f(x)=t+2017x,易知f(x)为R上的增函数,
∵g(x)=sinx-cosx-kx,
∴g′(x)=cosx+sinx-k=$\sqrt{2}$sin(x+$\frac{π}{4}$)-k,
又g(x)与f(x)的单调性相同,
∴g(x)在R上单调递增,则当x∈[-$\frac{π}{2}$,$\frac{π}{2}$],g'(x)≥0恒成立,
当x∈[-$\frac{π}{2}$,$\frac{π}{2}$]时,x+$\frac{π}{4}$∈[-$\frac{π}{4}$,$\frac{3π}{4}$],sin(x+$\frac{π}{4}$)∈[-$\frac{\sqrt{2}}{2}$,1],
$\sqrt{2}$sin(x+$\frac{π}{4}$)∈[-1,$\sqrt{2}$],
此时k≤-1,
故答案为(-∞,-1].

点评 本题考查导数的综合应用,考查利用导数求函数的单调性,正弦函数的性质,辅助角公式,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.如图所示,直四棱柱ABCD-A1B1C1D1内接于半径为$\sqrt{3}$的半O,四边形ABCD为正方形,则该四棱柱的体积最大时,AB的长为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆Γ:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,左顶点为C,上顶点为D,且|CD|=$\sqrt{5}$
(1)求椭圆Γ的方程
(2)O为坐标原点,斜率为k的直线过P的右焦点,且与Γ交于点A(x1,y1),B(x2,y2),若$\frac{{x}_{1}{x}_{2}}{{a}^{2}}$$+\frac{{y}_{1}{y}_{2}}{{b}^{2}}$=0,求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知定义在R上的函数f(x)=|x3-2x+1|,若方程f(x)-a|x-1|=0恰有4个互不相等的实数根,则所有满足条件的实数a组成的集合为$\left\{{\left.{1,\frac{5}{4}}\right\}}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.执行如图的程序框图,则输出的i=6.([$\frac{S}{3}$]表示不超过$\frac{S}{3}$的最大整数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xOy中,曲线C的参数方程是$\left\{\begin{array}{l}{x=2cosα}\\{y=2+2sinα}\end{array}\right.$(α为参数,0≤α≤π),以原点O为极点,x轴的正半轴为极轴,建立极坐标系.
(1)写出C的极坐标方程;
(2)若A、B为曲线C上的两点,且∠AOB=$\frac{π}{3}$,求|OA|+|OB|的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.一工厂生产某种机器零件,零件出厂前要进行质量检测,检测的方法是:先从这批零中任取3件做检测,若这3件都是合格品,则这批零件通过检测;若这3件中恰有2 件是合格品,则再从剩余零件中任取1件做检测,若为合格品则这批零件通过检测;其他情况下,这批零件都不能通过检测,假设这批零件的合格率位80%,即取出的零件是合格品的概率都为$\frac{4}{5}$,且各个零件是否为合格品相互独立.
(1)求这批零件通过检测的概率;
(2)已知每件零件检测费用为50元,抽取的每个零件都要检测,对这批零件做质量检测所需费用记为X(单位:元),求X的分布列级数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{mx}{lnx}$,曲线y=f(x)在点(e2,f(e2))处的切线与直线2x+y=0垂直.
(Ⅰ)求f(x)的单调减区间;
(Ⅱ)讨论g(x)=f(x)-$\frac{k{x}^{2}}{x-1}$零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.执行如图所示的程序框图,如果输入a=2,b=3,则输出的a的值为17.

查看答案和解析>>

同步练习册答案