精英家教网 > 高中数学 > 题目详情
6.在△ABC中,sinA:sinB:sinC=2:3:4,则△ABC中最大边所对角的余弦值为$-\frac{1}{4}$.

分析 已知等式利用正弦定理化简,得到三边之比,利用余弦定理表示出cosC,将三边长代入求出cosC的值即可.

解答 解:∵sinA:sinB:sinC=2:3:4,
∴由正弦定理化简得:a:b:c=2:3:4,
分别设a=2k,b=3k,c=4k,
则最大角为C,
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{4{k}^{2}+9{k}^{2}-16{k}^{2}}{2×2k×3k}$=-$\frac{1}{4}$,
故答案为:-$\frac{1}{4}$.

点评 此题考查了正弦、余弦定理,熟练掌握正弦、余弦定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若实数x,y满足$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y≥0}\\{x≤0}\end{array}\right.$,则2x+y的最小值为$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知四棱锥P-ABCD中,ABCD为边长等于2的正方形,PA⊥平面ABCD,PA=2$\sqrt{3}$,过BC的平面将二面角P-BC-A平分,交PA于M,交PD于N,E在线段BC上,且CE=2BE.
(1)证明:ME∥平面PCD;
(2)求二面角A-EN-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图所示,直四棱柱ABCD-A1B1C1D1内接于半径为$\sqrt{3}$的半O,四边形ABCD为正方形,则该四棱柱的体积最大时,AB的长为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知矩阵A=$[\begin{array}{l}{-2}&{1}\\{\frac{3}{2}}&{-\frac{1}{2}}\end{array}]$,则A的逆矩阵是$[\begin{array}{l}{1}&{2}\\{3}&{4}\end{array}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,a,b,c分别为角A,B,C的对边,若a+b=2,c=$\sqrt{3}$,则角C的最大值为(  )
A.60°B.90°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在底面为平行四边形的四棱锥P-ABCD中,PA⊥平面ABCD,且BC=2AB=4,∠ABC=60°,点E是PD的中点
(Ⅰ)求证:AC⊥PB
(Ⅱ)若AP=2,求B到平面AEC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆Γ:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,左顶点为C,上顶点为D,且|CD|=$\sqrt{5}$
(1)求椭圆Γ的方程
(2)O为坐标原点,斜率为k的直线过P的右焦点,且与Γ交于点A(x1,y1),B(x2,y2),若$\frac{{x}_{1}{x}_{2}}{{a}^{2}}$$+\frac{{y}_{1}{y}_{2}}{{b}^{2}}$=0,求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.一工厂生产某种机器零件,零件出厂前要进行质量检测,检测的方法是:先从这批零中任取3件做检测,若这3件都是合格品,则这批零件通过检测;若这3件中恰有2 件是合格品,则再从剩余零件中任取1件做检测,若为合格品则这批零件通过检测;其他情况下,这批零件都不能通过检测,假设这批零件的合格率位80%,即取出的零件是合格品的概率都为$\frac{4}{5}$,且各个零件是否为合格品相互独立.
(1)求这批零件通过检测的概率;
(2)已知每件零件检测费用为50元,抽取的每个零件都要检测,对这批零件做质量检测所需费用记为X(单位:元),求X的分布列级数学期望.

查看答案和解析>>

同步练习册答案