精英家教网 > 高中数学 > 题目详情
11.在△ABC中,a,b,c分别为角A,B,C的对边,若a+b=2,c=$\sqrt{3}$,则角C的最大值为(  )
A.60°B.90°C.120°D.150°

分析 利用基本不等式求得ab的最大值,再利用余弦定理、基本不等式求得cosC的最小值,可得角C的最大值.

解答 解:△ABC中,∵a+b=2≥2$\sqrt{ab}$,∴ab≤1,当且仅当a=b=1时,取等号,
又c=$\sqrt{3}$,则由余弦定理可得cosC=$\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2ab}$=$\frac{{(a+b)}^{2}-2ab-3}{2ab}$
=$\frac{{2}^{2}}{2ab}$-1-$\frac{3}{2ab}$=$\frac{1}{2ab}$-1≥$\frac{1}{2}$-1=-$\frac{1}{2}$,当且仅当a=b=1时,取等号,
故cosC的最小值为-$\frac{1}{2}$,∴角C的最大值为120°,
故选:C.

点评 本题主要考查余弦定理、基本不等式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知$\overrightarrow{a}$=(1,$\sqrt{3}$),b=($\sqrt{3}$,k),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则k=(  )
A.-1B.1C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设椭圆E的方程为$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足BM=2MA,直线OM的斜率为$\frac{{\sqrt{3}}}{4}$.
(1)求椭圆E的离心率e;
(2)若$b=\sqrt{3}$,直线l平行于AB,且在此椭圆上存在不同两点关于直线l对称,求直线l在y轴上截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆x2+$\frac{y^2}{4}$=1的左右两个顶点分别为A,B,曲线C是以A,B两点为顶点,焦距为2$\sqrt{5}$的双曲线,设点P在第一象限且在曲线C上,直线AP与椭圆相交于另一点T
(1)求曲线C的方程
(2)设P,T两点的横坐标分别为x1,x2,求证x1.x2为一定值
(3)设△TAB与△POB(其中O为坐标原点)的面积分别为S1,S2,且$\overrightarrow{PA}$•$\overrightarrow{PB}$≤15,求S12-S22的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在△ABC中,sinA:sinB:sinC=2:3:4,则△ABC中最大边所对角的余弦值为$-\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若关于x的方程|f(|x|)|=a,当a>0时总有4个解,则f(x)可以是(  )
A.x2-1B.$\frac{1}{x-1}$C.2x-2D.log2x-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知一个正四棱柱的侧面展开图的周长为18,则这个正四棱柱的体积的最大值为27.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.现有红、黄、蓝三种颜色供选择,在如图所示的五个空格里涂上颜色,要求相邻空格不同色,则不同涂色方法的种数是(  )
A.24B.36C.48D.108

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若直线l的方向向量为$\overrightarrow{a}=(1,0,2)$,平面α的法向量为$\overrightarrow{n}$=(-2,0,-4),则(  )
A.l∥αB.l⊥αC.l?αD.l与α斜交

查看答案和解析>>

同步练习册答案