精英家教网 > 高中数学 > 题目详情
已知函数f(x)=cos2x-cosx+b,x∈R.
(1)若f(
π
2
)=1,求函数f(x)的解析式;
(2)若x∈[0,
π
3
]时,f(x)的图象与x轴有交点,求实数b的取值范围.
考点:三角函数中的恒等变换应用
专题:三角函数的图像与性质
分析:(1)利用f(
π
2
)=1和函数解析式求得b.
(2)利用配方法对函数解析式整理,根据x的范围,确定cosx的范围,进而二次函数的性质建立不等式组求得b的范围.
解答: 解:(1)f(
π
2
)=cos2
π
2
-cos
π
2
+b=1,求得b=1.
(2)由知f(x)=cos2
π
2
-cos
π
2
+b
=(cosx-
1
2
2+b-
1
4

∵x∈[0,
π
3
],
1
2
≤cosx≤1,
要使f(x)的图象与x轴有交点,需
b-
1
4
≤0
(1-
1
2
)2+b-
1
4
≥0

解得0≤b≤
1
4
点评:本题主要考查了二次函数的性质,解不等式.考查了学生基础知识的综合运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x3-2ax2+x+1,
(1)若函数f(x)在点(1,f(1))处的切线的斜率为4,求实数a的值;
(2)若函数g(x)=f′(x)在区间(1,2)上存在零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是公差不为零的等差数列,且a2=3,a4,a5,a8成等比数列.
(1)求数列{an}的通项公式.
(2)设Sn为数列{an}的前n项和,求Sn的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3-3x2,a∈R.
(1)若a>0,讨论函数f(x)的单调性;
(2)若函数f(x)在区间[0,1]上单调递减,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知在棱柱ABCD-A1B1C1D1的底面是菱形,且AA1⊥面ABCD,∠DAB=60°,AD=AA1=1,F为棱AA1的中点,M为线段BD1的中点.
(1)求证:平面D1FB⊥平面BDD1B1
(2)求三棱锥D1-BDF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1+an=4n-3(n∈N*).
(1)若数列{an}是等差数列,求其公差d的值;
(2)若数列{an}的首项a1=3,求数列{an}的前100项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

求下列函数的导函数
①y=
sinx
x
             
②f(x)=ax-
a
x
-2lnx (a为常数)

查看答案和解析>>

科目:高中数学 来源: 题型:

先后抛掷一枚骰子,得到的点数分别记为a,b,按以下程序进行运算:
(1)若a=6,b=3,求程序运行后计算机输出的y的值;
(2)若“输出y的值是3”为事件A,求事件A发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+3ax2+3ax+1既有极大值又有极小值,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案