精英家教网 > 高中数学 > 题目详情
已知f(α)=
sin(π-α)cos(2π-α)tan(-α+
3
2
π)tan(-α-π)
sin(-α-π)

(1)化简f(α);
(2)若α是第三象限角,且cos(α-
3
2
π)=
1
5
,求f(α)的值.
考点:运用诱导公式化简求值,三角函数的化简求值
专题:三角函数的求值
分析:(1)利用诱导公式对分子和分母进行化简.
(2)根据已知条件求得sinα的值,进而根据平方关系求得cosα代入函数解析式求得答案.
解答: 解:(1)f(α)=
sinα•cosαcotα•(-tanα)
sinα
=-cosα.
(2)cos(α-
3
2
π)=-sinα=
1
5

∴sinα=-
1
5

∵α是第三象限角,
∴cosα=-
1-
1
25
=-
2
6
5

∴f(α)=-cosα=
2
6
5
点评:本题主要考查了诱导公式的应用,同角三角函数基本关系的应用.在运用诱导公式时要特别注意三角函数的符号和名称的变化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an},{bn},a1=1,an=an-1+2n-1,bn=
an-1+1
anan+1
,Sn为数列{bn}的前n项和,Tn为数列{Sn}的前n项和.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{bn}的前n项和Sn
(Ⅲ)求证:Tn
n
2
-
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c,满足f(-1)=0,且对任意实数x,都有f(x)-x≥0,并且当x∈(0,2)时,f(x)≤
1
4
(x+1)2
(1)求f(1)的值.
(2)求f(x)的解析式.
(3)若x∈[-1,1]时,函数g(x)=f(x)-mx是单调的,则求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于t的方程t2-zt+4+3i=0(z∈C)有实数解,
(1)设z=5+ai(a∈R),求a的值.
(2)设z=a+bi(a,b∈R),求|z|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
1
2
(2a+1)x2+(a2+a)x.
(I)若a=1,求f(x)在区间[0,3]上的值域;
(Ⅱ)若g(x)=f(x)+ax2-a2x,求函数g(x)的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

某年级共6个班,举行足球赛.
(Ⅰ)若先从6个班中随机抽取两个班举行比赛,则恰好抽中甲班与乙班的概率是多少?
(Ⅱ)若6个班平均分成两组,则甲班与乙班恰好在同一组的概率是多少?
(Ⅲ)若6个班之间进行单循环赛,规定赢一场得2分,平一场得1分,输一场得0分.假定任意两班比赛,赢、平、输的概率都相等,求最终甲班得8分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和记为Sn,点(n,Sn)在曲线f(x)=x2-4x(x∈N*)上.
(1)求数列{an}的通项公式;
(2)设bn=an•2n-1,求数列{bn}的前n项和Tn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:数列{an}的前n项和为Sn,若Sn=
n(a1+an)
2

(Ⅰ)求证:{an}是等差数列;
(Ⅱ)若a>0且a2=2a+1,S5=5(3a+1),求证:
1
a
2
1
+
1
a
2
2
+…+
1
a
2
n
n
(1+
a
2
)(1+
2n+1
2
a)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:x2-4x-5≤0,q:|x-3|<a(a>0),若p是q的充分不必要条件,则a的取值范围为
 

查看答案和解析>>

同步练习册答案