精英家教网 > 高中数学 > 题目详情
14.$\frac{sin(-340°)sin70°}{co{s}^{2}155°-si{n}^{2}25°}$的值是$\frac{1}{2}$.

分析 直接利用诱导公式及倍角公式化简求值.

解答 解:$\frac{sin(-340°)sin70°}{co{s}^{2}155°-si{n}^{2}25°}$=$\frac{sin(-360°+20°)cos20°}{co{s}^{2}25°-si{n}^{2}25°}$
=$\frac{sin20°cos20°}{cos50°}=\frac{2sin20°cos20°}{2cos50°}$=$\frac{sin40°}{2sin40°}=\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查三角函数的化简求值,考查了倍角公式及诱导公式的应用,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知f(x)=2sin($\frac{x}{2}$+$\frac{π}{6}$)
(1)若向量$\overrightarrow{m}$=($\sqrt{3}$cos$\frac{x}{4}$,cos$\frac{x}{4}$),$\overrightarrow{n}$=(-cos$\frac{x}{4}$,sin$\frac{x}{4}$),且$\overrightarrow{m}$∥$\overrightarrow{n}$,求f(x)的值;
(2)在△ABC中,角A,B,C的对边分别是a,b,c,且满足($\sqrt{2}$a-c)cosB=bcosC,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知数列{an}前n项和满足Sn-Sn-1=$\sqrt{{S}_{n}}$+$\sqrt{{S}_{n-1}}$  (n≥2),a1=1,则an=(  )
A.nB.2n-1C.n2D.2n2-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=($\frac{1}{3}$)x,a>0,b>0,a≠b,m=f($\frac{a+b}{2}$),n=f($\sqrt{ab}$),p=f($\frac{2ab}{a+b}$),则m,n,p 的大小关系为(  )
A.m<n<pB.m<p<nC.p<m<nD.p<n<m

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.$\sqrt{si{n}^{2}480°}$等于(  )
A.±$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,已知矩形ABCD中,AB=6,AD=4,过点C的直线l与AB,AD的延长线分别交于点M,N.
(1)若△AMN的面积不小于50,求线段DN的长度的取值范围;
(2)在直线l绕点C旋转的过程中,△AMN的面积S是否存在最小值?若存在,求出这个最小值及相应的AM,AN的长度;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知三角形的三个顶点A(-5,0),B(3,-3),C(0,2),求AB边所在直线的方程及该边上高线所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知向量$\overrightarrow{a}$=(cosθ,sinθ),θ∈(0,π),$\overrightarrow{b}$=(1,$\sqrt{3}$),若$\overrightarrow{a}$与$\overrightarrow{b}$共线,则sin2θ=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知定点A(12,0),M为曲线$\left\{{\begin{array}{l}{x=6+2cosθ}\\{y=2sinθ}\end{array}}$上的动点.
(1)若点P满足条件$\overrightarrow{AP}=2\overrightarrow{AM}$,试求动点P的轨迹C的方程;
(2)在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,若直线:ρcosθ+ρsinθ=a与曲线C相交于不同的E、F两点,O为坐标原点且$\overrightarrow{OE}•\overrightarrow{OF}$=12,求∠EOF的余弦值和实数a的值.

查看答案和解析>>

同步练习册答案