精英家教网 > 高中数学 > 题目详情
11.数列{an}的前n项和记为Sn,a1=1,an+1=2Sn+1(n≥1)
(Ⅰ)求{an}的通项公式;
(Ⅱ)等差数列{bn}的各项为正,其前n项和为Tn,且T3=15,又a1+b1,a2+b2,a3+b3成等比数列,求Tn
(Ⅲ)设c∈[3,6],在(2)的条件下,设g(n)=Tn-cn,求g(n)的最小值.

分析 (Ⅰ)运用数列的通项和求和的关系,结合等比数列的定义和通项公式,即可得到{an}的通项公式;
(Ⅱ)设{bn}的公差为d,运用等差数列的通项和等比数列的性质,解方程可得d=2,再由等差数列的求和公式,即可得到所求;
(Ⅲ)运用二次函数的对称轴和c∈[3,6],对c讨论,结合数列的单调性,即可得到所求最小值.

解答 解:(Ⅰ)由an+1=2Sn+1可得an=2Sn-1+1(n≥2),
两式相减得an+1-an=2an,an+1=3an(n≥2)
又a2=2S1+1=3,∴a2=3a1
故{an}是首项为1,公比为3的等比数列.
∴${a_n}={3^{n-1}}$;
(Ⅱ)设{bn}的公差为d,
由T3=15得,可得b1+b2+b3=15,可得b2=5,
故可设b1=5-d,b3=5+d,
又a1=1,a2=3,a3=9,
由题意可得(5-d+1)(5+d+9)=(5+3)2
解得d1=2,d2=-10,
∵等差数列{bn}的各项为正,∴d>0,
∴d=2,b1=3,
∴${T_n}=3n+\frac{{n({n-1})}}{2}×2={n^2}+2n$;
(Ⅲ)由已知得:g(n)=n2+2n-cn,对称轴$x=\frac{c-2}{2}$,
c∈[3,6],∴$\frac{c-2}{2}∈[{\frac{1}{2},2}]$,
①若c∈[3,5),则$\frac{c-2}{2}<\frac{3}{2}$,此时g(n)最小值为g(1)=3-c;
②若c=5,此时g(n)最小值为g(1)=g(2)=-2;
③若c∈(5,6],此时g(n)最小值为g(2)=8-2c.

点评 本题考查等比数列和等差数列的通项和求和公式的运用,同时考查数列的通项和求和的关系,以及数列的单调性的运用:求最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.在△ABC中,a,b,c分别为内角A,B,C所对的边,且A=$\frac{π}{6}$.现给出三个条件:①a=2;  ②B=45°;
③c=$\sqrt{3}$b.试从中选出两个可以确定△ABC的条件,并以此为依据求△ABC的面积.(只需写出一个选定方案即可)你选择的条件是①②;(用序号填写)由此得到的△ABC的面积为$\sqrt{3}+1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,角A、B、C所对的边分别为a、b、c,已知sin(A+$\frac{π}{6}$)+2cos(B+C)=0,
(1)求A的大小;   
(2)若a=6,求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在四棱锥P-ABCD中(如图),底面ABCD是直角梯形,M为PC中点,且AB∥DC,又∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD,PA=1.
(Ⅰ)求证:CD∥平面MAB;
(Ⅱ)求三棱锥M-PAD的体;
(Ⅲ)若点K线段PA上,试判断平面KBC和平面PAC的位置关系,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.小明想利用树影测量他家有房子旁的一棵树的高度,但由于地形的原因,树的影子总有一部分落在墙上,某时刻他测得树留在地面部分的影子长为1.4米,留在墙部分的影高为1.2米,同时,他又测得院子中一个直径为1.2米的石球的影子长(球与地面的接触点和地面上阴影边缘的最大距离)为0.8米,根据以上信息,可求得这棵树的高度是3.3米.(太阳光线可看作为平行光线)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\sqrt{3}$sinωx+cosωx(ω>0)的图象与x轴交点的横坐标构成一个公差为$\frac{π}{2}$的等差数列,把函数f(x)的图象沿x轴向左平移$\frac{π}{6}$个单位,得到函数g(x)的图象.若在区间[0,π]上随机取一个数x,则事件“g(x)≥1”发生的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设变量x,y满足约束条件$\left\{\begin{array}{l}{y≤2x}\\{x+2y≤2}\\{x≤2}\end{array}\right.$,则z=2x+y的最大值为(  )
A.8B.6C.4D.$\frac{8}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:
30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.
根据上述数据得到样本的频率分布表如下:
分组频数频率
[25,30]30.12
(30,35]50.20
(35,40]80.32
(40,45]n1f1
(45,50]n2f2
(1)确定样本频率分布表中n1,n2,f1和f2的值;
(2)根据上述频率分布表,画出样本频率分布直方图;
(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.(1)已知(1+ax)5=1+10x+bx2+…+a5x5,则b=40.
(2)若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a1+a2+a3+a4+a5=31.(用数字作答)

查看答案和解析>>

同步练习册答案