【题目】某企业生产甲乙两种产品均需用A,B两种原料,已知生产1吨每种产品需原料及每天原料的可用限额如右表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )
A.12万元 B.16万元
C.17万元 D.18万元
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,,动点满足(且).
(1)求动点的轨迹方程,并说明轨迹是什么曲线;
(2)若,点为动点的轨迹曲线上的任意一点,过点作圆:的切线,切点为.试探究平面内是否存在定点,使为定值,若存在,请求出点的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时,若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.
(1)用每天生产的卫兵个数与骑兵个数表示每天的利润(元);
(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市为增强市民的环境保护意识, 面向全市征召义务宣传志愿者,现从符合条件的志愿者中随机抽取名按年龄分组: 第组,第2 组,第组,第组,第组,得到的频率分布直方图如图所示,
(1)若从第组中用分层抽样的方法抽取名志愿者参与广场的宣传活动, 应从第组各抽取多少名志愿者?
(2)在(1)的条件下, 该县决定在这名志愿者中随机抽取名志愿者介绍宣传经验, 求第组至少有—名志愿者被抽中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,PA垂直于矩形ABCD所在的平面,E、F分别是AB、PD的中点,∠ADP=45°.
(1)求证:AF∥平面PCE.
(2)求证:平面PCD⊥平面PCE.
(3)若AD=2,CD=3,求点F到平面PCE的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com