2£®Èçͼ£¬ÒÑÖªËÄÀâ×¶P-ABCDÖУ¬µ×ÃæABCDÊÇÖ±½ÇÌÝÐΣ¬¡ÏADC=90¡ã£¬AB¡ÎCD£¬AD=DC=$\frac{1}{2}$AB=$\sqrt{2}$£¬Æ½ÃæPBC¡ÍÆ½ÃæABCD£®
£¨1£©ÇóÖ¤£ºAC¡ÍPB£»
£¨2£©ÈôPB=PC=$\sqrt{2}$£¬ÎÊÔÚ²àÀâPBÉÏÊÇ·ñ´æÔÚÒ»µãM£¬Ê¹µÃ¶þÃæ½ÇM-AD-BµÄÓàÏÒֵΪ$\frac{{5\sqrt{3}}}{9}$£¿Èô´æÔÚ£¬Çó³ö$\frac{PM}{PB}$µÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©È¡ABµÄÖеãE£¬Á¬½áCE£¬ÍƵ¼³öËıßÐÎAECDÊÇÕý·½ÐΣ¬´Ó¶øCE¡ÍAB£¬ÔÙÇó³öAC¡ÍCB£¬ÓÉ´ËÄÜÖ¤Ã÷AC¡ÍPB£®
£¨2£©ÉèBCµÄÖеãΪF£¬Á¬½áPF£¬·Ö±ðÒÔFE¡¢FB¡¢FPËùÔÚµÄÖ±ÏßΪxÖᣬyÖᣬzÖᣬ½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵ£¬ÀûÓÃÏòÁ¿·¨ÄÜÇó³ö½á¹û£®

½â´ð Ö¤Ã÷£º£¨1£©È¡ABµÄÖеãE£¬Á¬½áCE£¬
¡ßAB¡ÎCD£¬DC=$\frac{1}{2}$AB£¬¡àDC$\underset{¡Î}{=}$AE£¬
¡àËıßÐÎAECDÊÇÆ½ÐÐËıßÐΣ¬
ÓÖ¡ß¡ÏADC=90¡ã£¬¡àËıßÐÎAECDÊÇÕý·½ÐΣ¬¡àCE¡ÍAB£¬
¡à¡÷CABÊǵÈÑüÈý½Ç¿ªÓУ¬ÇÒCA=CB=2£¬AB=2$\sqrt{2}$£¬
¡àAC2+CB2=AB2£¬¡àAC¡ÍCB£¬
Ó֡߯½ÃæPBC¡ÍÆ½ÃæABCD£¬Æ½ÃæPBC¡ÉÆ½ÃæABCD=BC£¬
¡àAC¡ÍÆ½ÃæPBC£¬
ÓÖPB?Æ½ÃæPBC£¬¡àAC¡ÍPB£®
½â£º£¨2£©ÉèBCµÄÖеãΪF£¬Á¬½áPF£¬
¡ßPB=PC£¬¡àPF=BC£¬
¡àPF¡ÍÆ½ÃæABCD£¬¡àPF¡ÍAC£¬
Á¬½áEF£¬ÔòEF¡ÎAC£¬¡àPF¡ÍFE£¬EF¡ÍBC£¬
·Ö±ðÒÔFE¡¢FB¡¢FPËùÔÚµÄÖ±ÏßΪxÖᣬyÖᣬzÖᣬ½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵ£¬
¡ßAD=PB=PC=$\sqrt{2}$£¬ÔòF£¨0£¬0£¬0£©£¬A£¨2£¬-1£¬0£©£¬
B£¨0£¬1£¬0£©£¬D£¨1£¬-2£¬0£©£¬P£¨0£¬0£¬1£©£¬
¡à$\overrightarrow{PB}$=£¨0£¬1£¬-1£©£¬$\overrightarrow{AD}$=£¨-1£¬-1£¬0£©£¬$\overrightarrow{FP}$=£¨0£¬0£¬1£©£¬
ÈôÔÚÏß¶ÎPBÉÏ´æÔÚÒ»µãM£¬Éè$\overrightarrow{PM}$=$¦Ë\overrightarrow{PB}$£¬£¨0¡Ü¦Ë£¼1£©£¬
¡ß$\overrightarrow{PM}=\overrightarrow{FM}-\overrightarrow{FP}$£¬¡à$\overrightarrow{FM}=¦Ë\overrightarrow{PB}+\overrightarrow{FP}$=¦Ë£¨0£¬1£¬-1£©+£¨0£¬0£¬1£©=£¨0£¬¦Ë£¬1-¦Ë£©£¬
¡àM£¨0£¬¦Ë£¬1-¦Ë£©£¬$\overrightarrow{MD}=£¨1£¬-2-¦Ë£¬-1+¦Ë£©$£¬
ÉèÆ½ÃæMADµÄÒ»¸ö·¨ÏòÁ¿$\overrightarrow{m}$=£¨x£¬y£¬z£©£¬
Ôò$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AD}=x+y=0}\\{\overrightarrow{m}•\overrightarrow{MD}=x-£¨2+¦Ë£©y-£¨1-¦Ë£©z=0}\end{array}\right.$£¬È¡x=1£¬µÃ$\overrightarrow{m}$=£¨1£¬-1£¬$\frac{3+¦Ë}{1-¦Ë}$£©£¬
Æ½ÃæABCDµÄ·¨ÏòÁ¿$\overrightarrow{n}$=£¨0£¬0£¬1£©£¬
¡ß¶þÃæ½ÇM-AD-BµÄÓàÏÒֵΪ$\frac{{5\sqrt{3}}}{9}$£¬
¡à|cos£¼$\overrightarrow{m}£¬\overrightarrow{n}$£¾|=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{|\frac{3+¦Ë}{1-¦Ë}|}{\sqrt{1+1+£¨\frac{3+¦Ë}{1-¦Ë}£©^{2}}}$=$\frac{5\sqrt{3}}{9}$£¬
½âµÃ$¦Ë=\frac{1}{3}$»ò¦Ë=2£¨Éᣩ£®
¡à´æÔÚµãM£¬Ê¹µÃ¶þÃæ½ÇM-AD-BµÄÓàÏÒֵΪ$\frac{5\sqrt{3}}{9}$£¬ÇÒ$\frac{PM}{PB}$=$\frac{1}{3}$£®

µãÆÀ ±¾Ì⿼²éÒìÃæÖ±Ïß´¹Ö±µÄÖ¤Ã÷£¬¿¼²éÂú×ãÌõ¼þµÄµãµÄλÖõÄÈ·¶¨£¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÏòÁ¿·¨µÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªf£¨x£©=$\frac{2}{3}$x3-2ax2-3x£¨a¡ÊR£©£®
£¨¢ñ£©Èôf£¨x£©ÔÚÇø¼ä£¨-1£¬1£©ÄÚΪ¼õº¯Êý£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨¢ò£©¶ÔÓÚʵÊýaµÄ²»Í¬È¡Öµ£¬ÊÔÌÖÂÛy=f£¨x£©ÔÚ£¨-1£¬1£©Äڵļ«ÖµµãµÄ¸öÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Ô­Ê¼Éç»áʱÆÚ£¬ÈËÃÇͨ¹ýÔÚÉþ×ÓÉÏ´ò½áÀ´¼ÆËãÊýÁ¿£¬¼´¡°½áÉþ¼ÆÊý¡±£¬µ±Ê±ÓÐλ¸¸Ç×£¬ÎªÁË׼ȷ¼Ç¼º¢×ӵijɳ¤ÌìÊý£¬ÔÚ´Öϸ²»Í¬µÄÉþ×ÓÉÏ´ò½á£¬ÓÉϸµ½´Ö£¬ÂúÆß½øÒ»£¬ÈçͼËùʾ£¬º¢×ÓÒѾ­³öÉú468Ì죮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬$\frac{2a+b}{cosB}$=$\frac{-c}{cosC}$£®
£¨1£©Çó½ÇCµÄ´óС£»
£¨2£©ÇósinAsinBµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªº¯Êýf£¨x£©=x+$\frac{1}{x-a}$+$\frac{1}{x-b}$£¨a£¬bΪʵ³£Êý£©£®
£¨¢ñ£©Èôa+b=0£¬ÅжϺ¯Êýf£¨x£©µÄÆæÅ¼ÐÔ£¬²¢¼ÓÒÔÖ¤Ã÷£»
£¨¢ò£©¼ÇM=$\left\{\begin{array}{l}{a£¬b£¼a}\\{b£¬b¡Ýa}\end{array}\right.$£¬A=$\frac{a+b}{2}$£¬ÇóʵÊý¦ËµÄȡֵ·¶Î§£¬Ê¹µÃ·½³Ìf£¨x£©=$\frac{¦Ë}{x-A}$+AÔÚÇø¼ä£¨M£¬+¡Þ£©ÉÏÎ޽⣮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Èçͼ£¬Ð±ÈýÀâÖùABC-A1B1C1µÄ²àÃæAA1C1CÊÇÁâÐΣ¬²àÃæABB1A1¡Í²àÃæAA1C1C£¬A1B=AB=AA1=2£¬¡÷AA1C1µÄÃæ»ýΪ$\sqrt{3}$£¬ÇÒ¡ÏAA1C1ΪÈñ½Ç£®
£¨I£© ÇóÖ¤£ºAA1¡ÍBC1£»
£¨¢ò£©ÇóÈýÀâ×¶A1-ABC1µÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Éèan=3n£¬ÇóÖ¤£º$\frac{1}{2}$[1-£¨$\frac{1}{3}$£©n]£¼$\frac{1}{{a}_{1}-1}$+$\frac{1}{{a}_{2}-1}$+¡­+$\frac{1}{{a}_{n}-1}$£¼1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2017½ì°²»ÕºÏ·ÊÒ»ÖиßÈýÉÏѧÆÚÔ¿¼Ò»Êýѧ£¨ÎÄ£©ÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÌî¿ÕÌâ

º¯ÊýµÄ¶¨ÒåÓòÊÇ .

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2016-2017ѧÄêºÓ±±Õý¶¨ÖÐѧ¸ß¶þÉÏÔ¿¼Ò»Êýѧ£¨ÎÄ£©ÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÌî¿ÕÌâ

ÈôÏòÁ¿£¬£¬Ôòº¯ÊýÔÚÇø¼äÉϵÄÁãµã¸öÊýΪ £®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸