分析 $\frac{1}{{a}_{1}-1}$+$\frac{1}{{a}_{2}-1}$+…+$\frac{1}{{a}_{n}-1}$=$\frac{1}{3-1}+\frac{1}{{3}^{2}-1}$+$…+\frac{1}{{3}^{n}-1}$>$\frac{1}{3}+\frac{1}{{3}^{2}}+…+\frac{1}{{3}^{n}}$,$\frac{1}{{a}_{1}-1}$+$\frac{1}{{a}_{2}-1}$+…+$\frac{1}{{a}_{n}-1}$=$\frac{1}{3-1}+\frac{1}{{3}^{2}-1}$+$…+\frac{1}{{3}^{n}-1}$<$\frac{1}{2}+\frac{1}{{2}^{2}}+…+\frac{1}{{2}^{n}}$,由此利用等比数列的前n项和公式能证明$\frac{1}{2}$[1-($\frac{1}{3}$)n]<$\frac{1}{{a}_{1}-1}$+$\frac{1}{{a}_{2}-1}$+…+$\frac{1}{{a}_{n}-1}$<1.
解答 证明:∵an=3n,
∴$\frac{1}{{a}_{1}-1}$+$\frac{1}{{a}_{2}-1}$+…+$\frac{1}{{a}_{n}-1}$=$\frac{1}{3-1}+\frac{1}{{3}^{2}-1}$+$…+\frac{1}{{3}^{n}-1}$
>$\frac{1}{3}+\frac{1}{{3}^{2}}+…+\frac{1}{{3}^{n}}$=$\frac{\frac{1}{3}(1-\frac{1}{{3}^{n}})}{1-\frac{1}{3}}$=$\frac{1}{2}$[1-($\frac{1}{3}$)n].
$\frac{1}{{a}_{1}-1}$+$\frac{1}{{a}_{2}-1}$+…+$\frac{1}{{a}_{n}-1}$=$\frac{1}{3-1}+\frac{1}{{3}^{2}-1}$+$…+\frac{1}{{3}^{n}-1}$
<$\frac{1}{2}+\frac{1}{{2}^{2}}+…+\frac{1}{{2}^{n}}$=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$=1-$\frac{1}{{2}^{n}}$<1.
∴$\frac{1}{2}$[1-($\frac{1}{3}$)n]<$\frac{1}{{a}_{1}-1}$+$\frac{1}{{a}_{2}-1}$+…+$\frac{1}{{a}_{n}-1}$<1.
点评 本题考查不等式的证明,是中档题,解题时要认真审题,注意放缩法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2017届安徽合肥一中高三上学期月考一数学(文)试卷(解析版) 题型:解答题
已知函数
.
(1)用函数单调性的定义证明:函数
在区间
上为增函数;
(2)若
,当
时,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源:2016-2017学年河北正定中学高二上月考一数学(文)试卷(解析版) 题型:选择题
下列结论判断正确的是( )
A.任意两条直线确定一个平面
B.三条平行直线最多确定三个平面
C.棱长为1的正方体的内切球的表面积为
D.若平面
平面
,平面
平面
,则平面
平面![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com