精英家教网 > 高中数学 > 题目详情
4.函数f(x)=loga(2x-3)(a>0且a≠1)的定义域为($\frac{3}{2}$,+∞),图象过的定点为(2,0).

分析 根据对数函数的性质求出函数的定义域即可,根据2x-3=1,求出函数恒过定点(2,0).

解答 解:由题意得:2x-3>0,解得:x>$\frac{3}{2}$,
故函数的定义域是:$(\frac{3}{2},+∞)$;
令2x-3=1,解得:x=2,此时,f(2)=0,
故函数图象恒过(2,0),
故答案为:($\frac{3}{2}$,+∞),(2,0).

点评 本题考查了求导数函数的定义域问题,考查对数函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.函数f(x)=$\left\{\begin{array}{l}0,x=0\\ x-\frac{1}{x},x≠0\end{array}$的零点个数为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{1}{2}$ax2+lnx,其中a∈R.
(1)求函数f(x)的单调区间;
(2)若a<-1,f(x)在(0,1]上的最大值为-1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知f(x)=$\frac{2}{3}$x3-2ax2-3x(a∈R).
(Ⅰ)若f(x)在区间(-1,1)内为减函数,求实数a的取值范围;
(Ⅱ)对于实数a的不同取值,试讨论y=f(x)在(-1,1)内的极值点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,已知△ABC周长为2,连接△ABC三边的中点构成第二个三角形,再连接第二个对角线三边中点构成第三个三角形,依此类推,第2003个三角形周长为(  )
A.$\frac{1}{2002}$B.$\frac{1}{2001}$C.$\frac{1}{{2}^{2002}}$D.2${\;}^{\frac{1}{2001}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下面是一个2×2列联表
y1y2总计
x1*1640
x2ab*
总计28*70
则表中a、b处的值分别为(  )
A.14,16B.4,26C.4,24D.26,4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=2x3+bx2+cx,其导函数y=f′(x)的图象(如图所示)经过点(1,0),(2,0).
(Ⅰ)求f(x)的解析式;
(Ⅱ)若方程f(x)-m=0恰有2个根,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.原始社会时期,人们通过在绳子上打结来计算数量,即“结绳计数”,当时有位父亲,为了准确记录孩子的成长天数,在粗细不同的绳子上打结,由细到粗,满七进一,如图所示,孩子已经出生468天.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设an=3n,求证:$\frac{1}{2}$[1-($\frac{1}{3}$)n]<$\frac{1}{{a}_{1}-1}$+$\frac{1}{{a}_{2}-1}$+…+$\frac{1}{{a}_{n}-1}$<1.

查看答案和解析>>

同步练习册答案