精英家教网 > 高中数学 > 题目详情
5.设a,b都是正数,且满足$\frac{1}{a}$+$\frac{4}{b}$=${∫}_{0}^{\frac{π}{2}}$cosxdx,则使a+b>c恒成立的实数c的取值范围是(-∞,9).

分析 先根据定积分的计算得到$\frac{1}{a}$+$\frac{4}{b}$=1,由题知利用“1”的代换,以及基本不等式求解即可得到答案.

解答 解:∵${∫}_{0}^{\frac{π}{2}}$cosxdx=sinx|${\;}_{0}^{\frac{π}{2}}$=1,
∴$\frac{1}{a}$+$\frac{4}{b}$=1,
∵a,b均为正数,
∴a+b=(a+b)($\frac{1}{a}$+$\frac{4}{b}$)=5+$\frac{b}{a}$+$\frac{4a}{b}$≥5+2$\sqrt{\frac{b}{a}•\frac{4a}{b}}$=9.当且仅当a=3,b=6时取等号.
∴a+b>c恒成立的实数c的取值范围是c<9.
故答案为:(-∞,9).

点评 本题考查定积分的计算,基本不等式的应用,解题时要认真审题,仔细解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知数列{an}为等差数列,数列{bn}满足bn=an+n,若b2,b5,b11成等比数列,且b3=a6
(1)求an,bn
(2)求数列{$\frac{1}{a_nb_n}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设等比数列{an}的前n项和为Sn,若S10=40,S20=120,则S30=280.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知某几何体直观图和三视图如图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形,
(Ⅰ)求证:BN⊥平面C1B1N;
(Ⅱ)设θ为直线C1N与平面CNB1所成的角,求sinθ的值;
(Ⅲ)设M为AB中点,在BC边上找一点P,使MP∥平面CNB1并求$\frac{BP}{PC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图,在△ABC中,AB=AC=3,cos∠BAC=$\frac{1}{3}$,$\overrightarrow{DC}$=2$\overrightarrow{BD}$,则$\overrightarrow{AD}$•$\overrightarrow{BC}$的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知三角形ABC中,三边长分别是a,b,c,面积S=a2-(b-c)2,b+c=8,则S的最大值是$\frac{64}{17}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=2cosx(sinx+cosx)-1
(Ⅰ)求f(x)在区间[0,$\frac{π}{4}$]上的最大值;
(Ⅱ)在△ABC中,内角A,B,C的对边分别为a,b,c,且f($\frac{3}{4}$B)=1,a+c=2,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知{bn}为单调递增的等差数列,b3+b8=26,b5b6=168,设数列{an}满足$2{a_1}+{2^2}{a_2}+{2^3}{a_3}+…+{2^n}{a_n}={2^{b_n}}$
(1)求数列{bn}的通项;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在△OAB中,已知P为线段AB上一点,$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$.
(1)若$\overrightarrow{BP}$=2$\overrightarrow{PA}$,求x,y的值;
(2)若$\overrightarrow{BP}$=3$\overrightarrow{PA}$,|$\overrightarrow{OA}$|=4,|$\overrightarrow{OB}$|=2,且$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角为60°,求$\overrightarrow{OP}$•$\overrightarrow{AB}$的值.

查看答案和解析>>

同步练习册答案