分析 假设存在整数a,b,使得a≤f(x)≤b的解集恰好是[a,b].则G(a)=a,G(b)=a,a≤G( $\frac{m-2}{2}$)≤b,由G(a)=G(b)=a,解出整数a,b,再代入不等式检验即可.
解答 解:设G(x)=f(x)-g(x)-1=-x2+(m-2)x+2-m.
则由题意可得a≤-x2+(m-2)x+2-m≤b
假设存在整数a,b,使得a≤G(x)≤b的解集恰好是[a,b],
则G(a)=a,G(b)=a,∴a≤G( $\frac{m-2}{2}$)≤b,且a<b.
即有-a2+(m-2)a+2-m=a①,-b2+(m-2)b+2-m=a②,a≤$\frac{{m}^{2}-8m+12}{4}$≤b ③.
①-②可得a+b=m-2,代入①得-a2+a(a+b)-(a+b)=a,
再化简得(a-1)(b-2)=2,因为a、b均为整数,所以a=2,b=4或a=-1,b=1.
当a=2,b=4时,③即2≤$\frac{{m}^{2}-8m+12}{4}$≤4成立;当a=-1,b=1时,③即-1≤$\frac{{2}^{2}-8×2+12}{4}$≤1成立.
故存在整数a,b,使得a≤f(x)≤b的解集恰好是[a,b],且a=2,b=4;或a=-1,b=1,
故a-b=-2,
故答案为:-2.
点评 本题考查二次函数的单调性及运用,以及含绝对值的二次函数的单调性,考查分类讨论的思想方法,以及不等式的解法,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com