精英家教网 > 高中数学 > 题目详情

【题目】以坐标原点O为极点,轴的正半轴为极轴建立极坐标系,曲线C1的极坐标方程为:,曲线C2的参数方程为:,点N的极坐标为

)若M是曲线C1上的动点,求M到定点N的距离的最小值;

)若曲线C1曲线C2有有两个不同交点,求正数的取值范围.

【答案】2;(

【解析】

试题分别将极坐标方程与参数方程转化为普通方程,根据点与圆的几何意义求的最小值;

根据曲线C1与曲线C2有有两个不同交点的几何意义,求正数的取值范围.

试题解析:

解:()在直角坐标系xOy中,可得点,曲线为圆

圆心为,半径为1

=3

的最小值为. (5分)

)由已知,曲线为圆

曲线为圆,圆心为,半径为t

曲线与曲线有两个不同交点,

解得

正数t的取值范围是. (10分)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】以平面直角坐标系的原点为极点,轴的正半轴为极轴,取相同的单位长度建立极坐标系,直线的极坐标方程为,曲线的参数方程为为参数).

(Ⅰ)求直线的直角坐标方程和曲线的普通方程;

(Ⅱ)求曲线上的动点到直线距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆和圆为椭圆的左、右焦点,点在椭圆上,当直线与圆相切时,.

(Ⅰ)求的方程;

(Ⅱ)直线轴交于点,且与椭圆和圆都相切,切点分别为,记的积分别为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,椭圆上的点到其左焦点的最大距离为

1)求椭圆的标准方程;

2)过椭圆左焦点的直线与椭圆交于两点,直线,过点作直线的垂线与直线交于点,求的最小值和此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知线段是过抛物线的焦点F的一条弦,过点AA在第一象限内)作直线垂直于抛物线的准线,垂足为C,直线与抛物线相切于点A,交x轴于点T,给出下列命题:

(1)

(2)

(3).

其中正确的命题个数为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,准线为,过的直线与相交于两点.

1)以为直径的圆与轴交两点,若,求

2)点上,过点且垂直于轴的直线与分别相交于两点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数,常数.以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知直线的极坐标方程为.

1)写出及直线的直角坐标方程,并指出是什么曲线;

2)设是曲线上的一个动点,求点到直线的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥中,平面FG分别是的中点.

(Ⅰ)求证:平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥,底面为菱形, ,H为上的点,过的平面分别交于点,且平面

(1)证明:

(2)当的中点, 与平面所成的角为,求二面角的余弦值.

查看答案和解析>>

同步练习册答案