精英家教网 > 高中数学 > 题目详情
6.设G是三角形的重心,且$\overrightarrow{AG}•\overrightarrow{BG}$=0,若存在实数λ,使得$\frac{1}{tanA}$,$\frac{λ}{tanC}$,$\frac{1}{tanB}$依次成等差数列,则实数λ为$\frac{1}{4}$.

分析 利用G点为△ABC的重心,且$\overrightarrow{AG}•\overrightarrow{BG}$=0,进一步得到用 $\overrightarrow{BA}$、$\overrightarrow{BC}$表示,得到三边关系,将所求转化为三角的弦函数表示整理即得可.

解答 解:G为三角形ABC的重心,且$\overrightarrow{AG}•\overrightarrow{BG}$=0,
∴$\frac{\overrightarrow{AB}+\overrightarrow{AC}}{3}$•$\frac{\overrightarrow{BA}+\overrightarrow{BC}}{3}$=0,
即 $\frac{\overrightarrow{AB}+\overrightarrow{AC}}{3}$•$\frac{\overrightarrow{AC}-2\overrightarrow{AB}}{3}$=0,∴b2-2c2-2bc•cosA=0.
又$\frac{1}{tanA}$+$\frac{1}{tanB}$=$\frac{2λ}{tanC}$,
即 $\frac{cosA}{sinA}$+$\frac{cosB}{sinB}$=$\frac{2λcosC}{sinC}$,
∴2λ=( $\frac{cosA}{sinA}$+$\frac{cosB}{sinB}$)•$\frac{sinC}{cosC}$
=$\frac{sinBcosA+cosBsinA}{sinAsinB}$•$\frac{sinC}{cosC}$
=$\frac{sin(A+B)}{sinAsinB}$•$\frac{sinC}{cosC}$
=$\frac{sin2C}{sinAsinBcosC}$
=$\frac{{c}^{2}}{ab•\frac{{a}^{2}{+b}^{2}{-c}^{2}}{2ab}}$=$\frac{1}{2}$,
故λ=$\frac{1}{4}$,
故答案为:$\frac{1}{4}$.

点评 本题考查了三角形重心的性质以及数量积的运算和余弦定理的运用;关键是得到三边的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.如图,网格纸上小正方形的边长为1,粗线画出的是一个多面体的三视图,则该多面体的体积是(  )
A.16B.32C.48D.$\frac{64}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某校计划向高一年级1240名学生开设校本选修课程,为确保工作的顺利实施,按性别进行分层抽样,现抽取124名学生对社会科学类、自然科学类这两大类校本选修课程进行选课意向调查,其中男生有64人,在这124名学生中选修社会科学类的男生有22人、女生有40人
(Ⅰ)根据以上数据完成下列列联表
  选修社会科学类 选修自然科学类 合计
 男生   
 女生   
 合计   
(Ⅱ)判断能否有99.9%的把握认为科学的选修与性别有关?
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
 P(K2≥k0 0.10 0.05 0.010 0.005 0.001
 k0 2.706 3.841 6.635 7.879 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数y=$\frac{1}{3}$x3-2x2+3ax 且函数过点(1,$\frac{4}{3}$),解答:
(1)求a;
(2)判断函数的单调性;
(3)求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.中央气象台在2004年7月15日10:30发布的一则台风消息:今年第9号热带风暴“圆规”的中心今天上午八点钟已经移到了广东省汕尾市东南方大约440公里的南海东北部海面上,中心附近最大风力有9级.请建立适当的坐标系,用坐标表示出该台风中心的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知4张卡片上分别写着数字1,2,3,4,甲、乙两人等可能地从这4张卡片中选择1张,则他们选择同一张卡片的概率为(  )
A.$\frac{1}{32}$B.$\frac{1}{16}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.将一个半径为R的球形铝锭铸造成一个底面半径为R,高为H的圆柱体,则$\frac{H}{R}$=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知cos($\frac{π}{4}$+α)=-$\frac{3}{5}$,且α是第三象限角,则cos($\frac{π}{4}$+2α)的值为(  )
A.$\frac{31}{50}$$\sqrt{2}$B.$\frac{17}{50}$$\sqrt{2}$C.-$\frac{17}{50}$$\sqrt{2}$D.-$\frac{31}{50}$$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知A($\frac{3\sqrt{2}}{2}$,$\frac{7}{4}$),B(3$\sqrt{2}$,$\frac{5}{2}$),动点P满足|PB|=2|PA|,P的轨迹为曲线C,y轴左侧的点E在直线AB上,圆心为E的圆与x轴相切,且被轴截得的弦长为$\frac{1}{2}$
(Ⅰ)求C和圆E的方程
(Ⅱ)若直线l与圆E相切,且与C恰有一个公共点,求l的方程.

查看答案和解析>>

同步练习册答案